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In the context of multi-agent systems, the rational verification problem is concerned with 
checking which temporal logic properties will hold in a system when its constituent agents 
are assumed to behave rationally and strategically in pursuit of individual objectives. 
Typically, those objectives are expressed as temporal logic formulae which the relevant 
agent desires to see satisfied. Unfortunately, rational verification is computationally 
complex, and requires specialised techniques in order to obtain practically useable 
implementations. In this paper, we present such a technique. This technique relies on 
a reduction of the rational verification problem to the solution of a collection of parity 
games. Our approach has been implemented in the Equilibrium Verification Environment 
(EVE) system. The EVE system takes as input a model of a concurrent/multi-agent system 
represented using the Simple Reactive Modules Language (SRML), where agent goals are 
represented as Linear Temporal Logic (LTL) formulae, together with a claim about the 
equilibrium behaviour of the system, also expressed as an LTL formula. EVE can then 
check whether the LTL claim holds on some (or every) computation of the system that 
could arise through agents choosing Nash equilibrium strategies; it can also check whether 
a system has a Nash equilibrium, and synthesise individual strategies for players in the 
multi-player game. After presenting our basic framework, we describe our new technique 
and prove its correctness. We then describe our implementation in the EVE system, and 
present experimental results which show that EVE performs favourably in comparison to 
other existing tools that support rational verification.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The deployment of AI technologies in a wide range of application areas over the past decade has brought the problem 
of verifying such systems into sharp focus. Verification is the problem of ensuring that a particular system is correct with 
respect to some specification. The most successful approach to automated formal verification is that of model checking [1]. 
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With this approach, we first derive a finite state abstract model of the system S being studied; a common approach involves 
representing the system as a directed graph in which vertices correspond to states of the system, and edges correspond 
to the execution of program instructions, or the performance of actions; branching in the graph represents either input 
from the environment, or choices available to components of the system. With this approach, the directed graph is typically 
referred to as a labelled transition system, or Kripke structure: each path through the transition system represents a possible 
execution or computation of the system S . Correctness properties of interest are expressed as formulae ϕ of propositional 
temporal logic—the most popular such logics for this purpose are Linear Temporal Logic (LTL) and the Computation Tree 
Logic (CTL). In the case of properties ϕ expressed as LTL formulae, we typically want to check whether ϕ is satisfied on 
some or all possible computations of S , that is, on some or all possible paths through the transition system/Kripke structure 
representing S .

Great advances have been made in model checking since the approach was first proposed in the early 1980s, and the 
technique is now widely used in industry. Nevertheless, the verification of practical software systems is by no means a 
solved problem, and remains the subject of intense ongoing research. The verification of AI systems, however, raises a 
distinctive new set of challenges. The present paper is concerned with the problem of verifying multi-agent systems, which 
are AI systems consisting of multiple interacting semi-autonomous software components known as agents [2,3]. Software 
agents were originally proposed in the late 1980s, but it is only over the past decade that the software agent paradigm 
has been widely adopted. At the time of writing, software agents are ubiquitous: we have software agents in our phone 
(e.g., Siri), processing requests online, automatically trading in global markets, controlling complex navigation systems (e.g., 
those in self-driving cars), and even carrying out tasks on our behalf in our homes (e.g., Alexa). Typically, these agents do 
not work in isolation: they may interact with humans or with other software agents. The field of multi-agent systems is 
concerned with understanding and engineering systems that have these characteristics.

We typically assume that agents are acting in pursuit of goals or preferences that are delegated to them by their users. 
However, whether an agent is able to achieve its goal, or the extent to which it can bring about its preferences, will be 
directly influenced by the behaviour of other agents. Thus, to act optimally, an agent must reason strategically, taking into 
account the goals/preferences of other agents, and the fact that they too will be acting strategically in the pursuit of these, 
taking into account the goals/preferences of other agents and their own strategic behaviour. Game theory is the mathematical 
theory of strategic interaction, and as such, it provides a natural set of tools for reasoning about multi-agent systems [4].

With respect to the problem of verifying multi-agent systems, the relevance of game theory is as follows. Suppose we are 
interested in whether a multi-agent system S , populated by self-interested agents, might exhibit some property represented 
by an LTL formula ϕ . We can, of course, directly apply standard model checking techniques, to determine whether ϕ holds 
on some or all computations of S . However, given that our agents are assumed to act rationally, whether ϕ holds on some 
or all computations is not relevant if the computations in question involve irrational choices on behalf of some agents in 
the system. A much more relevant question, therefore, is whether ϕ holds on some or all computations that could result 
from agents in the system making rational choices. This raises the question of what counts as a rational choice by the agents 
in the system, and for this game theory provides a number of answers, in the form of solution concepts such as Nash 
equilibrium [4,3]. Thus, from the point of view of game theory, correct behaviour would correspond to rational behaviour
according to some game theoretic solution concept, which is another way of saying that agents in the system will act 
optimally with respect to their preferences/goals, under the assumption that other agents do the same.

This approach to reasoning about the behaviour of multi-agent AI systems establishes a natural connection between 
multi-agent systems and multi-player games: agents correspond to players, computations of the multi-agent system corre-
spond to plays of the game, individual agent behaviours correspond to player strategies (which define how players make 
choices in the system over time), and correct behaviour would correspond to rational behaviour—in our case, player be-
haviour that is consistent with the set of Nash equilibria of the multi-player game, whenever such a set is non-empty. 
Our main interest in this paper is the development of the theory, algorithms, and tools for the automated game theoretic 
analysis of concurrent and multi-agent systems, and in particular, the analysis of temporal logic properties that will hold in 
a multi-agent system under the assumption that players choose strategies which form a Nash equilibrium.1

The connection between AI systems (modelled as multi-agent systems) and multi-player games is well-established, but 
one may still wonder why correct behaviour for the AI system should correspond to rational behaviour in the multi-player 
game. This is a legitimate question, especially, because game theory offers very many different notions of rationality, and 
therefore of optimal behaviour in the system/game. For instance, solution concepts such as subgame-perfect Nash equilib-
rium (SPNE) and strong Nash equilibrium (SNE) are refinements of Nash equilibrium where the notion of rationality needs 
to satisfy stronger requirements. Consequently, there may be executions of a multi-agent system that would correspond to a 
Nash equilibrium of the associated multi-player game (thus, regarded as correct behaviours of the multi-agent system), but 
which do not correspond to a subgame-perfect Nash equilibrium or to a strong Nash equilibrium of the associated multi-
player game. We do not argue that Nash equilibrium is the only solution concept of relevance in the game theoretic analysis 
of multi-agent systems, but we believe (as do many others [3,5,6]) that Nash equilibrium is a natural and appropriate start-
ing point for such an analysis. Taking Nash equilibrium as our baseline notion of rationality in multi-player games, and 

1 Although in this work we focus on Nash equilibrium, a similar methodology may be applied using refinements of Nash equilibrium and other solution 
concepts.
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therefore of correctness in multi-agent systems, we focus our study on two problems related to the temporal equilibrium 
analysis of multi-agent systems [7,8], as we now explain.

Synthesis and rational verification. The two main problems of interest to us are the rational verification and automated syn-
thesis problems for concurrent and multi-agent systems modelled as multi-player games. In the rational verification problem, 
we desire to check which temporal logic properties are satisfied by the system/game in equilibrium, that is, temporal logic 
properties satisfied by executions of the multi-agent system generated by strategies that form a Nash equilibrium. A little 
more formally, let P1, . . . , Pn be the agents in our concurrent and multi-agent system, and let NE(P1, . . . , Pn) denote the 
set of all executions, hereafter called runs, of the system that could be generated by agents selecting strategies that form a 
Nash equilibrium. Finally, let ϕ be an LTL formula. Then, in the rational verification problem, we want to know whether for 
some/every run π ∈ NE(P1, . . . , Pn) we have π |= ϕ .

In the automated synthesis problem, on the other hand, we additionally desire to construct a profile of strategies for 
players so that the resulting profile is an equilibrium of the multi-player game, and induces a run that satisfies a given 
property of interest, again expressed as a temporal logic formula. That is, we are given the system P1, . . . , Pn , and a temporal 
logic property ϕ , and we are asked to compute Nash equilibrium strategies �σ = (σ1, . . . , σn), one for each player in the 
game, that would result in ϕ being satisfied in the run π(�σ ) that would be generated when these strategies are enacted.

Our approach. In this paper, we present a new approach to the rational verification and automated synthesis problems 
for concurrent and multi-agent systems. In particular, we develop a novel technique that can be used for both rational 
verification and automated synthesis using a reduction to the solution of a collection of parity games. The technique can be 
efficiently implemented making use of powerful techniques for parity games and temporal logic synthesis and verification, 
and has been deployed in the Equilibrium Verification Environment (EVE [9]), which supports high-level descriptions of 
systems/games using the Simple Reactive Modules Language (SRML [10,7]) and temporal logic specifications given by Linear 
Temporal Logic formulae [11].

The central decision problem that we consider is that of Non-Emptiness, the problem of checking if the set of Nash 
equilibria in a multi-player game is empty; as we will later show, rational verification and synthesis can be reduced to 
this problem. If we consider concurrent and multi-player games in which players have goals expressed as temporal logic 
formulae, this problem is known to be 2EXPTIME-complete for a wide range of system representations and temporal logic 
languages. For instance, for games with perfect information played on labelled graphs, the problem is 2EXPTIME-complete 
when goals are given as LTL formulae [12], and 2EXPTIME-hard when goals are given in CTL [13]. The problem is 2EXPTIME-
complete even if succinct representations [14,15] or only two-player games [16] are considered, and becomes undecidable 
if imperfect information and more than two players are allowed [17], showing the very high complexity of solving this 
problem, from both practical and theoretical viewpoints.

A common feature of the results above mentioned is that—modulo minor variations—their solutions are, in the end, 
reduced to the construction of an alternating parity automaton over infinite trees (APT [18]) which are then checked for 
non-emptiness. Here, we present a novel, simpler, and more direct technique for checking the existence of Nash equilibria 
in games where players have goals expressed in LTL. In particular, our technique does not rely on the solution of an APT. 
Instead, we reduce the problem to the solution of (a collection of) parity games [19], which are widely used for synthesis 
and verification problems.

Formally, a parity game is a two-player zero-sum turn-based game given by a labelled finite graph H = (V 0, V 1, E, α)

such that V = V 0 ∪ V 1 is a set of states partitioned into Player 0 (V 0) and Player 1 (V 1) states, respectively, E ⊆ V × V is 
a set of edges/transitions, and α : V → N is a labelling priority function. Player 0 wins if the smallest priority that occurs 
infinitely often in the infinite play is even. Otherwise, player 1 wins. It is known that solving a parity game (checking which 
player has a winning strategy) is in NP ∩ coNP [20], and can be solved in quasi-polynomial time [21].2

Our technique uses parity games in the following way. We take as input a game G (representing a concurrent and multi-
agent system) and build a parity game H whose sets of states and transitions are doubly exponential in the size of the 
input but with priority function only exponential in the size of the input game. Using a deterministic Streett automaton on 
infinite words (DSW [22]), we then solve the parity game, leading to a decision procedure that is, overall, in 2EXPTIME, and, 
therefore, given the hardness results we mentioned above, essentially optimal.

Context. Games have several dimensions: for example, they may be cooperative or non-cooperative; have perfect or imper-
fect information; have perfect or imperfect recall; be stochastic or not; amongst many other features. Each of these aspects 
will have a modelling and computational impact on the work to be developed, and so it is important to be precise about 
the nature of the games we are studying, and therefore the assumptions underpinning our approach.

Our framework considers non-cooperative multi-player general-sum games with perfect information, with Nash equilib-
rium as the main game-theoretic solution concept. The games are played on finite structures (state-transition structures 
induced by high-level SRML descriptions), with players having goals (preferences over plays) given by LTL formulae and 

2 Despite more than 30 years of research, and promising practical performance for algorithms to solve them, it remains unknown whether parity games 
can be solved in polynomial time.
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deterministic strategies represented by finite-state machines with output (Moore machines, sometimes referred to as trans-
ducers). Because of the features of our framework – chiefly, the fact that players have LTL goals and games are played on 
finite structures – considering deterministic strategies modelled as finite-state machines does not represent a restriction: 
in our framework, anything that a player can achieve with a perfect-recall strategy can also be achieved with a finite-state 
machine strategy (see, e.g., [15] for the formal results).

Finally, we note that our games have equilibria that are bisimulation invariant: that is, bisimilar structures have the same 
set of Nash equilibria. This is a highly desirable property, and to the best of our knowledge, in this respect our work is 
unique in the computer science and multi-agent systems literatures.

The EVE system. The technique outlined above and described in detail in this paper has been successfully implemented in 
the Equilibrium Verification Environment (EVE) system [23]. EVE takes as input a model of a concurrent and multi-agent 
system, in which agents are specified using the Simple Reactive Modules Language (SRML) [10,7], and preferences for agents 
are defined by associating with each agent a goal, represented as a formula of LTL [11]. Note that we believe our choice 
of the Reactive Modules language is a very natural one [24]: The language is both widely used in practical model checking 
systems, such as MOCHA [25] and PRISM [26], and close to real-world (declarative) programming models and specification 
languages.

Now, given a specification of a multi-agent system and player preferences, the EVE system can: (i) check for the existence 
of a Nash equilibrium in a multi-player game; (ii) check whether a given LTL formula is satisfied on some or every Nash 
equilibrium of the system; and (iii) synthesise individual player strategies in the game. As we will show in the paper,
EVE performs favourably compared with other existing tools that support rational verification. Moreover, EVE is the first 
and only tool for automated temporal equilibrium analysis for a model of multi-player games where Nash equilibria are 
preserved under bisimilarity.3

Note that our approach may be used to model a wide range of multi-agent systems. For example, as shown in [7], it is 
easy to capture multi-agent STRIPS systems [27].

Structure of the paper. The remainder of this article is structured as follows.

• Section 2 presents the relevant background on games, logic, and automata.
• In Section 3, we formalise the main problem of interest and give a high-level description of the core decision procedure 

for temporal equilibrium analysis developed in this paper.
• In Sections 4, 5, and 6, we describe in detail our main decision procedure for temporal equilibrium analysis, prove its 

correctness, and show that it is essentially optimal with respect to computational complexity.
• In Section 7, we show how to use our main decision procedure to do rational verification and automated synthesis of 

logic-based multi-player games.
• In Section 8, we describe the EVE system, and give detailed experimental results which demonstrate that EVE performs 

favourably in comparison with other tools that support rational verification.
• In Section 9, we conclude, discuss relevant related work, and propose some avenues for future work.

The source code for EVE is available online,4 and the system can also be accessed via the web.5

2. Preliminaries

Games. A concurrent (multi-player) game structure (CGS) is a tuple

M = (N, (Aci)i∈N,St, s0, tr)

where N = {1, . . . , n} is a set of players, each Aci is a set of actions, St is a set of states, with a designated initial state s0. 
With each player i ∈ N and each state s ∈ St, we associate a non-empty set Aci(s) of available actions that, intuitively, i can 
perform when in state s. We refer to a profile of actions �a = (a1, . . . , an) ∈ �Ac = Ac1 × · · · × Acn as a direction. A direction 
�a is available in state s if for all i we have ai ∈ Aci(s). Write �Ac(s) for the set of available directions in state s. For a given 
set of players A ⊆ N and an action profile �a, we let �aA and �a−A be two tuples of actions, respectively, one for each player 
in A and one for each player in N \ A. We also write �ai for �a{i} and �a−i for �aN\{i} . Furthermore, for two directions �a and �a′ , 
we write (�aA, �a′−A) to denote the direction where the actions for players in A are taken from �a and the actions for players 
in N \ A are taken from �a′ . Finally, tr is a deterministic transition function, which associate each state s and every available 
direction �a in s a state s′ ∈ St.

3 Other tools to compute Nash equilibria exist, but they do not use our model of strategies. A comparison with those other techniques for equilibrium 
analysis are discussed later.

4 See https://github .com /eve -mas /eve -parity.
5 See http://eve .cs .ox .ac .uk/.

https://github.com/eve-mas/eve-parity
http://eve.cs.ox.ac.uk/
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Whenever there is �a such that tr(s, �a) = s′ , we say that s′ is accessible from s. A path π = s0, s1, . . . ∈ Stω is an infinite 
sequence of states such that, for every k ∈ N , sk+1 is accessible from sk . By πk we refer to the (k + 1)-th state in π and 
by π≤k to the (finite) prefix of π up to the (k + 1)-th element. An action profile run is an infinite sequence η = �a0, �a1, . . . of 
action profiles. Note that, since M is deterministic (i.e., the transition function tr is deterministic), for a given state s0, an 
action profile run uniquely determines the path π in which, for every k ∈N , πk+1 = tr(πk, �ak).

A CGS is a type of concurrent system. As such, behaviourally equivalent CGSs should give rise to strategically equivalent 
games. However, that is not always the case. A comprehensive study of this issue can be found in [28,29] where the 
strategic power of games is compared using one of the most important behavioural (also called observational) equivalences 
in concurrency, namely bisimilarity, which is usually defined over Kripke structures or labelled transition systems (see, 
e.g., [30,31]). However, the equivalence can be uniformly defined for general CGSs, where directions play the role of, for 
instance, actions in transition systems. Formally, let M = (N, (Aci)i∈N, St, s0, tr) and M ′ = (N, (Aci)i∈N, St′, s′

0, tr
′) be two CGSs, 

and λ : St → AP and λ′ : St′ → AP be two labelling functions over a set of propositional variables AP. A bisimulation, denoted 
by ∼, between states s∗ ∈ St and t∗ ∈ St′ is a non-empty binary relation R ⊆ St × St′ , such that s∗ R t∗ and for all s, s′ ∈ St, 
t, t′ ∈ St′ , and �a ∈ �Ac:

• s R t implies λ(s) = λ′(t),
• s R t and tr(s, �a) = s′ implies tr(t, �a) = t′′ for some t′′ ∈ St′ with s′ R t′′ ,
• s R t and tr(t, �a) = t′ implies tr(s, �a) = s′′ for some s′′ ∈ St with s′′ R t′ .

Then, if there is a bisimulation between two states s∗ and t∗ , we say that they are bisimilar and write s∗ ∼ t∗ in such a 
case. We also say that CGSs M and M ′ are bisimilar (in symbols M ∼ M ′) if s0 ∼ s′

0. Bisimilar structures satisfy the same set 
of temporal logic properties, a desirable property that will be relevant later.

A CGS defines the dynamic structure of a game, but lacks a central aspect of games in the sense of game theory: 
preferences, which give games their strategic structure. A multi-player game is obtained from a structure M by associating 
each player with a goal. In this paper, we consider multi-player games with parity and Linear Temporal Logic (LTL) goals.

LTL [11] extends classical propositional logic with two operators, X (“next”) and U (“until”), that can be used to express 
properties of paths. The syntax of LTL is defined with respect to a set AP of propositional variables as follows:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

where p ∈ AP. The remaining classical logical connectives are defined in terms of ¬ and ∨ in the usual way. Two key 
derived LTL operators are F (“eventually”) and G (“always”), which are defined in terms of U as follows: Fϕ = � U ϕ and 
Gϕ = ¬F¬ϕ .

We interpret formulae of LTL with respect to tuples (π, t, λ), where π is a path over some multi-player game, t ∈ N
is a temporal index into π , and λ : St → 2AP is a labelling function, that indicates which propositional variables are true in 
every state. Formally, the semantics of LTL is given by the following rules:

(π, t, λ) |= �
(π, t, λ) |= p iff p ∈ λ(πt)

(π, t, λ) |= ¬ϕ iff it is not the case that (π, t, λ) |= ϕ
(π, t, λ) |= ϕ ∨ ψ iff (π, t, λ) |= ϕ or (π, t, λ) |= ψ

(π, t, λ) |= Xϕ iff (π, t + 1, λ) |= ϕ

(π, t, λ) |= ϕ U ψ iff for some t′ ≥ t : (
(π, t′, λ) |= ψ and

for all t ≤ t′′ < t′ : (π, t′′, λ) |= ϕ
)
.

If (π, 0, λ) |= ϕ , we write π |= ϕ and say that π satisfies ϕ .

Definition 1. A (concurrent multi-player) LTL game is a tuple

GLTL = (M, λ, (γi)i∈N)

where λ : St → 2AP is a labelling function on the set of states St of M, and each γi is the goal of player i, given as an LTL
formula over AP.

To define multi-player games with parity goals we consider priority functions. Let α : St → N be a priority function. 
A path π satisfies α : St → N , and write π |= α in that case, if the minimum number occurring infinitely often in the 
infinite sequence α(π0), α(π1), α(π2), . . . is even.

Observe that parity conditions are prefix-independent, that is, for every path π and a finite sequence h ∈ St∗ , it holds that 
h · π |= α if and only if π |= α.

Definition 2. A (concurrent multi-player) Parity game is a tuple

GPAR = (M, (αi)i∈N)



6 J. Gutierrez et al. / Artificial Intelligence 287 (2020) 103353
where αi : St →N is the goal of player i, given as a priority function over St.

Hereafter, for statements regarding either LTL or Parity games,6 we will simply denote the underlying structure as G . 
Games are played by each player i selecting a strategy σi that will define how to make choices over time. Formally, for a 
given game G , a strategy σi = (Si, s0

i , δi, τi) for player i is a finite state machine with output (a transducer), where Si is a 
finite and non-empty set of internal states, s0

i is the initial state, δi : Si × �Ac → Si is a deterministic internal transition function, 
and τi : Si → Aci an action function. Note that strategies are required to output actions that are available to the agent in 
the current state. To enforce this, we assume that the current state s ∈ St in the arena is encoded in the internal state si
in Si of agent i and that the action τi(si) taken by the action function belongs to Aci(s). Let 
i be the set of strategies for 
player i. A strategy is memoryless in G from s if Si = St, s0

i = s, and δi = tr. Once every player i has selected a strategy σi , a 
strategy profile �σ = (σ1, . . . , σn) results and the game has an outcome, a path in M, which we will denote by π(�σ ). Because 
strategies are deterministic, π(�σ ) is the unique path induced by �σ , that is, the infinite sequence s0, s1, s2, . . . such that

• sk+1 = tr(sk, (τ1(sk
1), · · · , τn(sk

n))), and

• sk+1
i = δi(sk

i , (τ1(sk
1), · · · , τn(sk

n))), for all k ≥ 0.

Note that the path induced by the strategy profile �σ (σ1, . . . , σn) from state s0 corresponds to the one generated by the 
finite transducer T�σ obtained from the composition of the strategies σi ’s in �σ , with input set St and output set �Ac, where 
the initial input is s0. Since such transducer is finite, the generated path π is ultimately periodic, that is, there exists p, r ∈N
such that πk = πk+r for every p ≤ k. This means that, after the prefix π≤p , the path loops indefinitely over the sequence 
πp+1 . . .πp+r .

Nash equilibrium. Since the outcome of a game determines if a player goal is satisfied, we can define a preference rela-
tion �i over outcomes for each player i. Let wi be γi if G is an LTL game, and be αi if G is a Parity game. Then, for two 
strategy profiles �σ and �σ ′ in G , we have

π(�σ) �i π(�σ ′) if and only if π(�σ ′) |= wi implies π(�σ) |= wi .

On this basis, we can define the concept of Nash equilibrium [4] for a multi-player game with LTL or parity goals: given a 
game G , a strategy profile �σ is a Nash equilibrium of G if, for every player i and strategy σ ′

i ∈ 
i , we have

π(�σ) �i π((�σ−i,σ
′
i ))

where (�σ−i, σ ′
i ) denotes (σ1, . . . , σi−1, σ ′

i , σi+1, . . . , σn), the strategy profile where the strategy of player i in �σ is replaced 
by σ ′

i . Let NE(G) denote the set of Nash equilibria of G . In [28,29] we showed that, using the model of strategies defined 
above, the existence of Nash equilibria is preserved across bisimilar systems. This is in contrast to other models of strategies 
considered in the concurrent games literature, which do not preserve Nash equilibria. Because of this, hereafter, we say 
that {
i}i∈N is a set of bisimulation-invariant strategies and that NE(G) is the set of bisimulation-invariant Nash equilibrium 
profiles of G .

Automata. A deterministic automaton on infinite words is a tuple

A = (AP, Q ,q0,ρ,F)

where Q is a finite set of states, ρ : Q × AP → Q is a transition function, q0 is an initial state, and F is an acceptance 
condition. We mainly use parity and Streett acceptance conditions. A parity condition F is a partition {F1, . . . , Fn} of Q , 
where n is the index of the parity condition and any [1, n] � k is a priority. We use a priority function α : Q →N that maps 
states to priorities such that α(q) = k if and only if q ∈ Fk . For a run π = q0, q1, q2 . . . , let inf (π) denote the set of states 
occurring infinitely often in the run:

inf (π) = {q ∈ Q |q = qi for infinitely many i’s}
A run π is accepted by a deterministic parity word (DPW) automaton with condition F if the minimum priority that occurs 
infinitely often is even, i.e., if the following condition is satisfied:(

min
k∈[1,n]

(inf (π) ∩ Fk �= ∅)

)
mod 2 = 0.

A Streett condition F is a set of pairs {(E1, C1), . . . , (En, Cn)} where Ek ⊆ Q and Ck ⊆ Q for all k ∈ [1, n]. A run π is 
accepted by a deterministic Streett word (DSW) automaton S with condition F if π either visits Ek finitely many times or 
visits Ck infinitely often, i.e., if for every k either inf (π) ∩ Ek = ∅ or inf (π) ∩ Ck �=∅.

6 To simplify notations, note that, hereafter, by “Parity game” we denote the concurrent and multi-player extension defined here of the well-known 
two-player turn-based parity games in the literature.
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Fig. 1. Example of a 4 × 4 grid world.
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Fig. 2. A 4 × 4 grid world with safe Nash equilibrium.

Example. In order to illustrate the usage of our framework, consider the following example. Suppose we have two 
robots/agents inhabiting a grid world (an abstraction of some environment, e.g., a warehouse) with dimensions n × n. Ini-
tially, the agents are located at some corners of the grid; The agents are each able to move around the grid in directions 
north, south, east, and west. The goal of each agent is to reach the opposite corner. For instance, if agent i’s initial position 
is (0, 0), then the goal is to reach position (n − 1, n − 1). A number of obstacles may also appear on the grid. The agents 
are not allowed to move into a coordinate occupied by an obstacle or outside the grid world. To make it clearer, consider 
the configuration shown in Fig. 1; a (grey) filled square depicts an obstacle. Agent 1, depicted by �, can only move west to 
(2, 3), whereas agent 2, depicted by ©, can only move east to (1, 0).

In this example we make the following assumptions: (1) at each timestep, each agent has to make a move, that is, it 
cannot stay at the same position for two consecutive timesteps, and it can only move at most one step; (2) the goal of each 
agent is, as stated previously, to eventually reach the opposite corner of her initial position. From system design point of 
view, the question that may be asked is: can we synthesise a strategy profile such that it induces a stable (Nash equilibrium) 
run and at the same time ensures that the agents never crash into each other?

Checking the existence of such strategy profile is not trivial. For instance, the configuration in Fig. 1 does not admit any 
safe Nash equilibrium runs, that is, where all agents get their goals achieved without crashing into each other. Player ©
can reach (3, 3) without crashing into �, since � can safely “wait” by moving back and forth between (0, 3) and (1, 3)

until © reaches (3, 3). However, there is no similar safe “waiting zone” for © to get out of �’s way. On the other hand, 
the configuration in Fig. 2, admits safe Nash equilibrium; © and � have safe waiting zones (0, 0) and (1, 0), and (0, 3) and 
(1, 3), respectively. Clearly, such a reasoning is not always straightforward, especially when the setting is more complex, 
and therefore, having a tool to verify and synthesise such scenario is desirable. Later in Section 8.5 we will discuss how to 
encode and check such systems using our tool.

3. A decision procedure using parity games

We are now in a position to formally state the Non-Emptiness problem:

Given: An LTL Game GLTL.

Question: Is it the case that NE(GLTL) �= ∅?

As indicated before, we solve both verification and synthesis through a reduction to the above problem. The technique 
we develop consists of three steps. First, we build a Parity game GPAR from an input LTL game GLTL . Then—using a char-
acterisation of Nash equilibrium (presented later) that separates players in the game into those that achieve their goals in 
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a Nash equilibrium (the “winners”, W ) and those that do not achieve their goals (the “losers”, L)—for each set of players 
in the game, we eliminate nodes and paths in GPAR which cannot be a part of a Nash equilibrium, thus producing a modi-
fied Parity game, G−L

PAR. Finally, in the third step, we use Streett automata on infinite words to check if the obtained Parity 
game witnesses the existence of a Nash equilibrium. The overall algorithm is presented in Algorithm 1 which also includes 
some comments pointing to the relevant Sections/Theorems. The first step is contained in line 3, while the third step is in 
lines 12–14. The rest of the algorithm is concerned with the second step. In the sections that follow, we will describe each 
step of the algorithm and, in particular, what are and how to compute Pun j(GPAR) and G−L

PAR, two key constructions used in 
our decision procedure.

Algorithm 1: Nash equilibrium via Parity games.

1 Input: An LTL game GLTL = (N, (Aci)i∈N, St, s0, tr, λ, (γi)i∈N).
2 Output: “Yes” if NE(GLTL) �= ∅; “No” otherwise.
3 GPAR ⇐= GLTL ; /* from Section 4 (Theorem 1) */
4 foreach W ⊆ N do
5 foreach j ∈ L = N \ W do
6 Compute Pun j(GPAR) ; /* from Section 5 (Theorem 2) */
7 end

8 Compute G−L
PAR

9 foreach i ∈ W do
10 Compute Ai and Si from G−L

PAR
11 end

12 if L(×i∈W
(Si)) �= ∅ ; /* from Section 5 (Theorem 3) */

13 then
14 return “Yes”
15 end
16 end
17 return “No”

Complexity. The procedure presented above runs in doubly exponential time, matching the optimal upper bound of the 
problem. In the first step we obtain a doubly exponential blowup. The underlying structure M of the obtained Parity 
game GPAR is doubly exponential in the size of the goals of the input LTL game GLTL , but the priority functions set (αi)i∈N
is only (singly) exponential. Then, in the second step, reasoning takes only polynomial time in the size of the underlying 
concurrent game structure of GPAR, but exponential time in both the number of players and the size of the priority functions 
set. Finally, the third step takes only polynomial time, leading to an overall 2EXPTIME complexity.

4. From LTL to parity

We now describe how to realise line 3 of Algorithm 1, and in doing so we prove a strong correspondence between the 
set of Nash equilibria of the input LTL game GLTL and the set of Nash equilibria of its associated Parity game GPAR. This 
result allows us to shift reasoning on the set of Nash equilibria of GLTL into reasoning on the set of Nash equilibria of GPAR. 
The basic idea behind this step of the decision procedure is to transform all LTL goals (γi)i∈N in GLTL into a collection of 
DPWs, denoted by (Aγi

)i∈N, that will be used to build the underlying CGS of GPAR. We construct GPAR as follows.
In general, using the results in [32,33], from any LTL formula ϕ over AP one can build a DPW Aϕ = 〈2AP, Q , q0, ρ, α〉
such that, L(Aϕ) = {π ∈ (2AP)ω : π |= ϕ}, that is, the language accepted by Aϕ is exactly the set of words over 2AP that 

are models of ϕ . The size of Q is doubly exponential in |ϕ| and the size of the range of α is singly exponential in |ϕ|. Using 
this construction we can define, for each LTL goal γi , a DPW Aγi

.

Definition 3. Let GLTL = (M, λ, (γi)i∈N) be an LTL game whose underlying CGS is M = (N, (Aci)i∈N, St, s0, tr), and let Aγi
=

〈2AP, Q i, q0
i , ρi, αi〉 be the DPW corresponding to player i’s goal γi in GLTL . The Parity game GPAR associated to GLTL is GPAR =

(M′, (α′
i)i∈N), where M′ = (N, (Aci)i∈N, St′, s′

0, tr
′
) and (α′

i)i∈N are as follows:

• St′ = St ××i∈N Q i and s′
0 = (s0, q0

1, . . . , q
0
n);

• for each state (s, q1, . . . , qn) ∈ St′ and action profile �a,
tr′((s, q1, . . . , qn), �a) = (tr(s, �a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));

• α′
i(s, q1, . . .qn) = αi(qi).

Intuitively, the game GPAR is the product of the LTL game GLTL and the collection of parity (word) automata Aγi
that 

recognise the models of each player’s goal. Informally, the game executes in parallel the original LTL game together with 
the automata built on top of the LTL goals. At every step of the game, the first component of the product state follows the 
transition function of the original game GLTL , while the “automata” components are updated according to the labelling of 
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the current state of GLTL . As a result, the execution in GPAR is made, component by component, by the original execution, 
say π , in the LTL game GLTL , paired with the unique runs of the DPWs Aγi

generated when reading the word λ(π).
Observe that in the translation from GLTL to its associated GPAR the set of actions for each player is unchanged. This, in 

turn, means that the set of strategies in both GLTL and GPAR is the same, since for every state s ∈ St and action profile �a, 
it follows that �a is available in s if and only if it is available in (s, q1, . . . , qn) ∈ St′ , for all (q1, . . . , qn) ∈×i∈N Q i . Using 
this correspondence between strategies in GLTL and strategies in GPAR, we can prove the following Lemma, which states an 
invariance result between GLTL and GPAR with respect to the satisfaction of players’ goals.

Lemma 1 (Goals satisfaction invariance). Let GLTL be an LTL game and GPAR its associated Parity game. Then, for every strategy profile 
�σ and player i, it is the case that π(�σ) |= γi in GLTL if and only if π(�σ) |= αi in GPAR .

Proof. We prove the statement by double implication. To show the left to right implication, assume that π(�σ ) |= γi in GLTL , 
for any player i ∈ N, and let π denote the infinite path generated by �σ in GLTL; thus, we have that λ(π) |= γi . On the other 
hand, let π ′ denote the infinite path generated in GPAR by the same strategy profile �σ . Observe that the first component 
of π ′ is exactly π . Moreover, consider the (i + 1)-th component ρi of π ′ . By the definition of GPAR, it holds that ρi is the 
run executed by the automaton Aγi

when the word λ(π) is read. By the definition of the labelling function of GPAR, it holds 
that the parity of π ′ according to α′

i corresponds to the one recognised by Aγi
in ρi . Thus, since we know that λ(π) |= γi , 

it follows that ρi is accepting in Aγi
and therefore π ′ |= αi , which implies that π(�σ ) |= αi in GPAR. For the other direction, 

observe that all implications used above are equivalences. Using those equivalences one can reason backwards to prove the 
statement. �

Using Lemma 1 we can then show that the set of Nash Equilibria for any LTL game exactly corresponds to the set of 
Nash equilibria of its associated Parity game. Formally, we have the following invariance result between games.

Theorem 1 (Nash equilibrium invariance). Let GLTL be an LTL game and GPAR its associated Parity game. Then, NE(GLTL) = NE(GPAR).

Proof. The proof proceeds by double inclusion. First, assume that a strategy profile �σ ∈ NE(GLTL) is a Nash Equilibrium in 
GLTL and, by contradiction, it is not a Nash Equilibrium in GPAR. Observe that, due to Lemma 1, the set of players that get 
their goals satisfied by π(�σ) in GLTL (the “winners”, W ) is the same set of players that get their goals satisfied by π(�σ)

in GPAR. Then, there is player j ∈ L = N \ W and a strategy σ ′
j such that π((�σ− j, σ ′

j)) |= α j in GPAR. Then, due to Lemma 1, 
we have that π((�σ− j, σ ′

j)) |= γ j in GLTL and so σ ′
j would be a beneficial deviation for player j in GLTL too—a contradiction. 

On the other hand, for every �σ ∈ NE(GPAR), we can reason in a symmetric way and conclude that �σ ∈ NE(GLTL). �
5. Characterising Nash equilibria

Thanks to Theorem 1, we can focus our attention on Parity games, since a technique for solving such games will also 
provide a technique for solving their associated LTL games. To do this we characterise the set of Nash equilibria in the Parity 
game construction GPAR in our algorithm. The existence of Nash Equilibria in LTL games can be characterised in terms of 
punishment strategies and memoryful reasoning [34]. We will show that a similar characterisation holds here in a parity 
games framework, where only memoryless reasoning is required. To do this, we first introduce the notion of punishment 
strategies and regions formally, as well as some useful definitions and notations. In what follows, given a (memoryless) 
strategy profile �σ = (σ1, . . . , σn) defined on a state s ∈ St of a Parity game GPAR, that is, such that s0

i = s for every i ∈ N, we 
write GPAR, �σ , s |= αi if π(�σ ) |= αi in GPAR. Moreover, if s = s0 is the initial state of the game, we omit it and simply write 
GPAR, �σ |= αi in such a case.

Definition 4 (Punishment strategies and regions). For a Parity game GPAR and a player i ∈ N, we say that �σ−i is a punishment 
(partial) strategy profile against i in a state s if, for all strategies σ ′

i ∈ 
i , it is the case that GPAR, (�σ−i, σ ′
i ), s �|= αi . A state s

is punishing for i if there exists a punishment (partial) strategy profile against i in s. By Puni(GPAR) we denote the set of 
punishing states, the punishment region, for i in GPAR.

To understand the meaning of a punishment (partial) strategy profile, it is useful to think of a modification of the game 
GPAR, in which player i still has its goal αi , while the rest of the players are collectively playing in an adversarial mode, 
i.e., trying to make sure that i does not achieve αi . This scenario is represented by a two-player zero-sum game in which 
the winning strategies of the (coalition) player, denoted by −i, correspond (one-to-one) to the punishment strategies in 
the original game GPAR. As described in [34], knowing the set of punishment (partial) strategy profiles in a given game is 
important to compute its set of Nash Equilibria. For this reason, it is useful to compute the set Puni(GPAR), that is, the set of 
states in the game from which a given player i can be punished. (e.g., to deter undesirable unilateral player deviations). To 
do this, we reduce the problem to computing a winning strategy in a turn-based two-player zero-sum parity game, whose 
definition is as follows.
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Fig. 3. Sequentialisation of a game. On the left, a representation of a transition from s1 to s2 using action profile (�a− j , a j). On the right, the two states s1

and s2 are assigned to Player 0 in the parity game, which are interleaved with a state of Player 1 corresponding to the choice of �a− j by coalition − j in the 
original game.

Definition 5. For a (concurrent multi-player) Parity game

GPAR = (N,St, (Aci)i∈N, s0, tr, (αi)i∈N)

and player j ∈ N, the sequentialisation of GPAR with respect to player j is the (turn-based two-player) parity game G j
PAR =

〈V 0, V 1, E, α〉 where

• V 0 = St and V 1 = St × �Ac− j ;
• E = {(s, (s, �a− j)) ∈ St × (St × �Ac− j)} ∪ {((s, �a− j), s′) ∈ (St × �Ac− j) × St :

∃a′
j ∈ Ac j . s′ = tr(s, (�a− j), a′

j)};
• α : V 0 ∪ V 1 →N is such that

α(s) = α j(s) + 1 and α(s, �a− j) = α j(s) + 1.

Part of a sequentialisation is illustrated in Fig. 3.
The formal connection between the notion of punishment in GPAR and the set of winning strategies in G j

PAR is established 
in the following theorem, where by Win�(G j

PAR) we denote the winning region of Player 0 in G j
PAR, that is, the states from 

which Player 0, representing the set of players − j = N \ { j} (the coalition of players not including j), has a memoryless 
winning strategy against player j in the two-player zero-sum parity game G j

PAR.

Theorem 2. For all states s ∈ St, it is the case that s ∈ Pun j(GPAR) if and only if s ∈ Win�(G j
PAR). In other words, it holds that 

Pun j(GPAR) = Win�(G j
PAR) ∩ St.

Proof. The proof goes by double inclusion. From left to right, assume s ∈ Pun j(GPAR) and let �σ− j be a punishment strategy 
profile against player j in s, i.e., such that GPAR, (�σ− j, σ ′

j), s �|= α j , for every strategy σ ′
j ∈ 
 j of player j. We now define a 

strategy σ0 for player 0 in G j
PAR that is winning in s. In order to do this, first observe that, for every finite path π ′

≤k ∈ V ∗ · V 0

in G j
PAR starting from s, there is a unique finite sequence of action profiles �a0

− j, . . . , �ak
− j and a sequence π≤k = s0, . . . , sk+1

of states in St∗ such that

π ′
≤k = s0, (s0, �a0

− j), . . . , sk, (sk, �ak
− j), . . . , sk+1 .

Now, for every path π ′
≤k of this form that is consistent with �σ− j , i.e., the sequence �a0

− j, . . . , �ak−1
− j is generated by �σ− j , define 

σ0(π
′
≤k) = (sk+1, �ak+1

− j ), where �ak+1
− j is the action profile selected by �σ− j . To prove that σ0 is winning, consider a strategy σ1

for Player 1 and the infinite path π ′ = π((σ0, σ1)) generated by (σ0, σ1). It is not hard to see that the sequence π ′
odd of odd 

positions in π ′ belongs to a path π in GPAR and it is consistent with �σ− j . Thus, since �σ− j is a punishment strategy, π ′
odd

does not satisfy α j . Moreover, observe that the parity of the sequence π ′
even of even positions equals that of π ′

odd . Thus, we 
have that Inf(λ′(π ′)) + 1 = Inf(λ′(π ′

odd)) + 1 ∪ Inf(λ′(π ′
even)) + 1 = Inf(λ(π)) and so π ′ is winning for player 0 in G j

PAR and 
σ0 is a winning strategy.

From right to left, let s ∈ St ∩ Win�(G j
PAR) and let σ0 be a winning strategy for Player 0 in G j

PAR, and assume σ0 is 
memoryless. Now, for every player i, with i �= j, define the memoryless strategy σi in GPAR such that, for every s′ ∈ St, if 
σ0(s′) = (s′, �a− j), then σi(s′) = (�a− j)i ,7 i.e., the action that player i takes in σ0 at s′ . Now, consider the (memoryless) strategy 
profile �σ− j given by the composition of all strategies σi , and consider a play π in GPAR, starting from s, that is consistent 
with �σ− j . Thus, there exists a play π ′ in G i

PAR, consistent with σ0, such that π = π ′
odd . Moreover, since π ′

odd = π ′
even , we 

have that Inf(λ′(π ′)) = Inf(λ′(π ′
odd)) ∪ Inf(λ′(π ′

even)) = Inf(λ(π)) − 1. Since π ′ is winning for Player 0, we know that π �|= α j
and so �σ− j is a punishment strategy against Player j in s. �

Definition 5 and Theorem 2 not only make a bridge from the notion of punishment strategy to the notion of winning 
strategy for two-player zero-sum games, but also provide a way to understand how to compute punishment regions as 
well as how to synthesise an actual punishment strategy in Parity games. In this way, by computing winning regions and 

7 By an abuse of notation, we let σi(s′) be the value of τi(s′).
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pun j
s0 s1 . . . sk sk+1

s′

. . .

. . .

�a0 �a1 �ak−1 �ak

((�ak)− j ,a′
j)

σi

�ak+1

Fig. 4. Representation of the strategy σi . At the beginning, player i follows the transducer Tη that generates the action profile run η. The strategy adheres 
to it until a unilateral deviation from player j occurs, here represented at the k-th step of the play. Once the deviation has occurred, and the game entered 
a state s′ , player i starts executing the strategy σ pun j

i , to employ the punishment strategy against player j.

winning strategies in these games we can solve the synthesis problem for individual players in the original game with LTL
goals, one of the problems we are interested in. Thus, from Definition 5 and Theorem 2, we have the following corollary.

Corollary 1. Computing Puni(GPAR) can be done in polynomial time with respect to the size of the underlying graph of the game GPAR
and exponential in the size of the priority function αi , that is, to the size of the range of αi . Moreover, there is a memoryless strategy �σi
that is a punishment against player i in every state s ∈ Puni(GPAR).

As described in [34], in any (infinite) run sustained by a Nash equilibrium �σ in deterministic and pure strategies, that 
is, in π(�σ ), it is the case that all players that do not get their goals achieved in π(�σ ) can deviate from such a (Nash 
equilibrium) run only to states where they can be punished by the coalition consisting of all other players in the game. To 
formalise this idea in the present setting, we need one more concept about punishments, defined next.

Definition 6. An action profile run η = �a0, �a1, . . . ∈ �Ac
ω

is punishing-secure in s for player j if, for all k ∈N and a′
j , we have 

tr(π j, ((�ak)− j, a′
j)) ∈ Pun j(GPAR), where π is the only play in GPAR starting from s and generated by η.

Using the above definition, we can characterise the set of Nash equilibria of a given game. Recall that strategies are 
formalised as transducers, i.e., as finite state machines with output, so such Nash equilibria strategy profiles produce runs 
which are ultimately periodic. Moreover, since in every run π there are players who get their goals achieved in π (and 
therefore do not have an incentive to deviate from π ) and players who do not get their goals achieve in π (and therefore 
may have an incentive to deviate from π ), we will also want to explicitly refer to such players. To do that, the following 
notation will be useful: Let W (GPAR, �σ) = {i ∈ N : GPAR, �σ |= αi} denote the set of player that get their goals achieved in 
π(�σ). We also write W (GPAR, π) = {i ∈ N : GPAR, π |= αi}.

Theorem 3 (Nash equilibrium characterisation). For a Parity game GPAR, there is a Nash Equilibrium strategy profile �σ ∈ NE(GPAR)

if and only if there is an ultimately periodic action profile run η such that, for every player j ∈ L = N \ W (GPAR, π), the run η is 
punishing-secure for j in state s0 , where π is the unique path generated by η from s0 .

Proof. The proof is by double implication. From left to right, for �σ ∈ NE(GPAR), let η be the ultimately periodic sequence 
of action profiles generated by �σ . Moreover, assume for a contradiction that η is not punishing-secure for some j ∈ L. 
By the definition of punishment-secure, there is k ∈ N and action a′

j ∈ Ac j for player j such that s′ = tr(πk, ((�ak)− j, a′
j) /∈

Pun j(GPAR). Now, consider the strategy σ ′
j that follows η up to the (k − 1)-th step, executes action a′

j on step k to get into 
state s′ , and applies a strategy that achieves α j from that point onwards. Note that such a strategy is guaranteed to exist 
since s′ /∈ Pun j(GPAR). Therefore, GPAR, (�σ− j, σ ′

j) |= α j and so σ ′
j is a beneficial deviation for player j, a contradiction to �σ

being a Nash equilibrium.
From right to left, we need to define a Nash equilibrium �σ assuming only the existence of η. First, recall that η can be 

generated by a finite transducer Tη = (Q η, q0
η, δη, τη) where δη : Q η → Q η and τη : Q η → �Ac. Moreover, for every player i

and deviating player j, with i �= j, there is a (memoryless) strategy σ pun j
i to punish player j in every state in Pun j(GPAR). 

By suitably combining the transducer with the punishment strategies, we define the following strategy σi = (Q i, q0
i , δi, τi)

for player i where

• Q i = St × Q η × (L ∪ {�}) and q0
i = (s0, q0

η, �);

• δi = Q i × �Ac → Q i is defined as

δi((s, q, �), �a) =

⎧⎪⎨
⎪⎩

(tr(s, �a), δη(q),�), if a = τη(q)

(tr(s, �a), δη(q), j), a− j = (τη(q))− j and �a j �= (τη(q)) j

⊥, otherwise

8

• τi : Q i → Aci is such that

8 For completeness, the function δi is assumed to take an available action. However, this is not important, as it is clear from the proof we never use this 
case.
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– τi(s, q, �) = (τη(q))i , and

– τi(s, q, j) = σ
pun j
i (s).

To understand how strategy σi works, observe that its set of internal states is given by the following triple. The first 
component is a state of the game, remembering the position of the execution. The second component is a state of the 
transducer Tη , which is used to employ the execution of the action profile run η. The third component is either the 
symbol �, used to flag that no deviation has occurred, or the name of a losing player j, used to remember that such 
a player has deviated from η. At the beginning of the play, strategy σi starts executing the actions prescribed by the 
transducer Tη (Fig. 4). It sticks to it until some losing player j performs a deviation. In such a case, the third component 
of the internal state of σi switches to remember the deviating player. Moreover, from that point on, it starts executing 
the punishment strategy σ pun j

i . Recall that parity conditions are prefix-independent. Therefore, no matter the result of the 
execution, if all the players start playing according to the punishment strategy σ pun j

i , the resulting path will not satisfy the 
parity condition α j . Now, define σ to be the collection of all σi . It remains to prove that �σ is a Nash Equilibrium.

First, observe that since �σ produces exactly η, we have W (GPAR, �σ) = W (GPAR, η), that is, the players that get their goals 
achieved in π(�σ) and η are the same. Thus, only players in L could have a beneficial deviation. Now, consider a player j ∈ L
and a strategy σ ′

j and let k ∈ N be the minimum (first) step where σ ′
j produces an outcome that differs from σ j when 

executed along with �σ− j . We write π ′ for π((�σ− j, σ ′
j)). Thus, we have πh = π ′

h for all h ≤ k and πk+1 �= π ′
k+1. Hence 

π ′
k+1 = tr(π ′

k, (ηk)− j, a′
j) = tr(πk, (ηk)− j, a′

j) ∈ Pun j(GPAR) and GPAR, (�σ− j, σ ′
j) �|= α j , since σ− j is a punishment strategy from 

π ′
k+1. Thus, there is no beneficial deviation for j and �σ is a Nash equilibrium. �

6. Computing Nash equilibria

Theorem 3 allows us to reduce the problem of finding a Nash equilibrium to finding a path in the game satisfying certain 
properties, which we will show how to check using DPW and DSW automata. To do this, let us fix a given set W ⊆ N of 
players in a given game GPAR, which are assumed to get their goals achieved. Now, due to Theorem 3, we have that an 
action profile run η corresponds to a Nash equilibrium with W being the set of “winners” in the game if, and only if, the 
following two properties are satisfied:

• η is punishment-secure for j in s0, for all j ∈ L = N \ W ;
• GPAR, π |= αi , for every i ∈ W ;

where π is, as usual, the path generated by η from s0.
To check the existence of such η, we have to check these two properties. First, note that, for η to be punishment-secure 

for every losing player j ∈ L, the game has to remain in the punishment region of each j. This means that an acceptable 
action profile run needs to generate a path that is, at every step, contained in the intersection 

⋂
j∈L Pun j(GPAR). Thus, to 

find a Nash equilibrium, we can remove all states not in such an intersection. We also need to remove some edges from 
the game. Indeed, consider a state s and a partial action profile �a− j . It might be the case that tr(s, (�a− j, a′

j)) /∈ Pun j(GPAR), 
for some a′

j ∈ Ac j . Therefore, an action profile run that executes the partial profile �a− j over s cannot be punishment-secure, 
and so all outgoing edges from (s, �a− j), can also be removed. After doing this for every j ∈ L, we obtain G−L

PAR, the game 
resulting from GPAR after the removal of the states and edges just described. As a consequence, G−L

PAR has all and only the 
paths that can be generated by an action profile run that is punishment-secure for every j ∈ L.

The only thing that remains to be done is to check whether there exists a path in G−L
PAR that satisfies all players in W . To 

do this, we use DPW and DSW automata. Since players goals are parity conditions, a path satisfying player i is an accepting 
run of the DPW Ai where the set of states and transitions are exactly those of G−L

PAR and the acceptance condition is given 
by αi . Then, in order to find a path satisfying the goals of all players in W , we can solve the emptiness problem of the 
automaton intersection ×i∈W Ai . However, observe that each Ai differs from each other only in its acceptance condition αi . 
Moreover, each parity condition α = (F1, . . . , Fn) can be regarded as a Street condition of the form ((E1, C1), . . . , (Em, Cm))

with m = � n
2 � and (Ei, Ci) = (F2i+1, 

⋃
j≤i F2 j), for every 0 ≤ i < m. Therefore, the intersection language of ×i∈W Ai can 

be recognized by a Street automaton over the same set of states and transitions and the concatenation of all the Streett 
conditions determined by the parity conditions of the players in W . The overall translation is a DSW automaton with 
a number of Streett pairs being logarithmic in the number of its states, whose emptiness can be solved in polynomial 
time [35]. Finally, as we fixed W at the beginning, all we need to do is to use the procedure just described for each W ⊆ N, 
if needed (see Algorithm 1).9

Concerning the complexity analysis, consider again Algorithm 1 and denote by n the number of agents and |StLTL| the 
number of states. Observe that Line 3 of the algorithm builds a Parity game GPAR by making the product construction 

9 Some previous techniques, e.g. [36], to the computation of pure Nash equilibria are not optimal as they have exponential space complexity in the 
number of players |N|.
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between GLTL and all the DPW automata Aγi
, whose state space is 22|γi | , and the number of priorities is 2|γi | . Thus, the 

number of states of GPAR is |StPAR| = |StLTL| · 22|γ1 | · . . . · 22|γn |
. Now, on the one hand, Line 6 requires to solve a parity game 

on the state-graph of GPAR with 2γi priorities. This is solved by applying Zielonka’s algorithm [37], that works in time 
(|StPAR|)2 · (|StPAR|)2γi , thus polynomial in the state space of GPAR and doubly exponential in the size of objectives γi ’s. On 
the other hand, Line 12 calls for the Non-Emptiness procedure of a DSW whose number of Street pairs is linear in the sum 
of priorities of the automata Aγ�, . . . , Aγn and so logarithmic in its state-space (that is doubly exponential in the size of the 
objectives). Such procedure is polynomial in the state space of the automaton [35, Corollary 10.8] and therefore polynomial 
in |StPAR|. Finally, consider the loops of Line 4 and Line 5, respectively. The first is on all the possible subsets of agents, and 
thus of length 2n . The second is on all the possible agents, and thus of length n. This sums up to an overall complexity for 
Algorithm 1 of:

2n · n · ((|StPAR|)2 · (|StPAR|)
∑

i∈N 2γi + |StPAR|).

Recall that |StPAR| is linear in the set of states of the GLTL and doubly exponential in every objective γi ’s of the 
agents. Thus, the procedure is polynomial in |StLTL|, exponential in N , and doubly exponential in the size of the formu-
las |γ1|, . . . , |γN |.

7. Synthesis and verification

We now show how to solve the synthesis and verification problems using Non-Emptiness. For synthesis, the solution is 
already contained in the proof of Theorem 3, so we only need to sketch out the approach here. Note that, in the computation 
of punishing regions, the algorithm builds, for every player i and potential deviator j, a (memoryless) strategy that player i
can play in the collective strategy profile �σ− j in order to punish player j, should player j wishes to deviate. If a Nash 
equilibrium exists, the algorithm also computes a (ultimately periodic) witness of it, that is, a computation π in G , that, in 
particular, satisfies the goals of players in W . At this point, using this information, we are able to define a strategy σi for 
each player i ∈ N in the game (i.e., including those not in W ), as follows: while no deviation occurs, play the action that 
contributes to generate π , and if a deviation of player j occurs, then play the (memoryless) strategy σ

punj
i that is defined 

in the game to punish player j in case j were to deviate. Notice, in addition, that because of Lemma 1 and Theorem 1, 
every strategy for player i in the game with parity goals is also a valid strategy for player i in the game with LTL goals, and 
that such a strategy, being bisimulation-invariant, is also a strategy for every possible bisimilar representation of player i. In 
this way, our technique can also solve the synthesis problem for every player, that is, can compute individual bisimulation-
invariant strategies for every player (system component) in the original multi-player game (concurrent system).

For verification, one can use a reduction of the following two problems, called E-Nash and A-Nash in [15,8,7], to Non-

Emptiness.

Given: Game GLTL, LTL formula ϕ.

E-Nash: Is it the case that π(�σ) |= ϕ, for some �σ ∈ NE(GLTL) ?

A-Nash: Is it the case that π(�σ) |= ϕ, for all �σ ∈ NE(GLTL) ?

We write (GLTL, ϕ) ∈ E-Nash to denote that (GLTL, ϕ) is an instance of E-Nash, i.e., given a game GLTL and a LTL formula ϕ , 
the answer to E-Nash problem is a “yes”; and, similarly for A-Nash.

Because we are working on a bisimulation-invariant setting, we can ensure something even stronger: that for any two 
games GLTL and G′

LTL , whose underlying CGSs are M and M′ , respectively, we know that if M is bisimilar to M′ , then 
(GLTL, ϕ) ∈ E-Nash if and only if (G′

LTL, ϕ) ∈ E-Nash, for all LTL formulae ϕ; and, similarly for A-Nash, as desired.
In order to solve E-Nash and A-Nash via Non-Emptiness, one could use the following result, whose proof is a simple 

adaptation of the same result for iterated Boolean games [15] and for multi-player games with LTL goals modelled using 
SRML [7], which was first presented in [38].

Lemma 2. Let G be a game and ϕ be an LTL formula. There is a game H of linear size in G, such that NE(H) �= ∅ if and only if ∃�σ ∈
NE(G). π(�σ ) |= ϕ .

However, since we have Algorithm 1 at our disposal, an easier – and more direct – solution can be obtained. To solve
E-Nash we can modify line 12 of Algorithm 1 to include the restriction that such an algorithm, which now receives ϕ as a 
parameter, returns “Yes” in line 13 if and only if ϕ is satisfied in some run in the set of Nash equilibrium witnesses. The 
new line 12 is “if L(×i∈W (Si) × Sϕ) �= ∅”, where Sϕ is the DSW automaton representing ϕ . All complexities remain the 
same; the modified algorithm for E-Nash is denoted as Algorithm 1’. We can then use Algorithm 1’ to solve A-Nash, also 
as described in [38]: essentially, we can check whether Algorithm 1’(GLTL, ¬ϕ) returns “No” in line 16. If it does, then no 
Nash equilibrium of GLTL satisfies ¬ϕ , either because no Nash equilibrium exists at all (thus, A-Nash is vacuously true) or 
because all Nash equilibria of GLTL satisfy ϕ , then solving A-Nash positively. Note that in this case, since A-Nash is solved 
positively when the algorithm returns “No” in line 16, then no specific Nash equilibrium strategy profile is synthesised, 
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as expected. However, if the algorithm returns “Yes”, that is, the case when the answer to A-Nash problem with (GLTL, ϕ)

instance is negative, then a strategy profile is synthesised from Algorithm 1’ which corresponds to a counter-example for 
(GLTL, ϕ) ∈ A-Nash. It should be easy to see that implementing E-Nash and A-Nash is straightforward from Algorithm 1. 
Also, as already known, it is also easy to see that Algorithm 1’ solves Non-Emptiness if and only if (GLTL, �) ∈ E-Nash.

8. Implementation

We have implemented the decision procedures presented in this paper. Our implementation uses SRML [10] as a mod-
elling language. SRML is based on the Reactive Modules language [24] which is used in a number of verification tools, 
including PRISM [26] and MOCHA [25]. The tool that implements our algorithms is called EVE (for Equilibrium Verification 
Environment) [23]. EVE is the first and only tool able to analyse the linear temporal logic properties that hold in equilibrium 
in a concurrent, reactive, and multi-agent system within a bisimulation-invariant framework. It is also the only tool that 
supports all of the following combined features: a high-level description language using SRML, general-sum multi-player 
games with LTL goals, bisimulation-invariant strategies, and perfect recall. It is also the only tool for Nash equilibrium anal-
ysis that relies on a procedure based on the solution of parity games, which has allowed us to solve the (rational) synthesis 
problem for individual players in the system using very powerful techniques originally developed to solve the synthesis 
problem from (linear-time) temporal logic specifications.

To the best of our knowledge, there are only two other tools that can be used to reason about temporal logic equilibrium 
properties of concurrent/multi-agent systems: PRALINE[39] and MCMAS [40,41].

PRALINE allows one to compute a Nash equilibrium in a game played in a concurrent game structure [39]. The un-
derlying technique uses alternating Büchi automata and relies on the solution of a two-player zero-sum game called the 
‘suspect game’ [36]. PRALINE can be used to analyse games with different kinds of players goals (e.g., reachability, safety, 
and others), but does not permit LTL goals, and does not compute bisimulation-invariant strategies.

MCMAS is a model checking tool for multi-agent systems [42]. Since it can be used to model check Strategy Logic 
(SL [12]) formulae [41], and SL can express the existence of a Nash equilibrium, one can model a multi-agent system in
MCMAS and check for the existence of a Nash equilibrium in such a system using SL. However, MCMAS only supports SL 
with memoryless strategies (while our implementation does not have this restriction) and, as PRALINE, does not compute 
bisimulation-invariant strategies either.

From the many differences between PRALINE, MCMAS, and EVE (and their associated underlying reasoning and veri-
fication techniques), one of the most important ones is bisimulation-invariance, a feature needed to be able to do verifi-
cation and synthesis, e.g., when using symbolic methods with OBDDs or some model-minimisation techniques. Not being 
bisimulation-invariant also means that in some cases PRALINE, MCMAS, and EVE would deliver completely different an-
swers. For instance, unlike EVE, with PRALINE and MCMAS it may be the case that for two bisimilar systems PRALINE and
MCMAS would compute a Nash equilibrium in one of them and none in the other. A particular instance is the “motivating 
example” in [28]. Since the two systems there are bisimilar, EVE is able to compute a bisimulation-invariant Nash equilib-
rium in both systems, while PRALINE and MCMAS, both of which are not using bisimulation-invariant model of strategies, 
cannot. The experiment supporting this claim is reported in Section 8.4 along with the performance results. Indeed, even in 
cases where all tools are able to compute a Nash equilibrium, EVE outperforms the other two tools as the size of the input 
system grows, despite the fact that the model of strategies we use in our procedure is richer in the sense that it takes into 
account more information of the underlying game.10

8.1. Tool description

Modelling language. Systems in EVE are specified with the Simple Reactive Modules Language (SRML [10]), that can be used 
to model non-deterministic systems. Each system component (agent/player) in SRML is represented as a module, which 
consists of an interface that defines the name of the module and lists a non-empty set of Boolean variables controlled by 
the module, and a set of guarded commands, which define the choices available to the module at each state. There are two 
kinds of guarded commands: init, used for initialising the variables, and update, used for updating variables subsequently.

A guarded command has two parts: a “condition” part (the “guard”) and an “action” part. The “guard” determines 
whether a guarded command can be executed or not given the current state, while the “action” part defines how to up-
date the value of (some of) the variables controlled by a corresponding module. Intuitively, ϕ � α can be read as “if the 
condition ϕ is satisfied, then one of the choices available to the module is to execute α”. Note that the value of ϕ being 
true does not guarantee the execution of α, but only that it is enabled for execution, and thus may be chosen. If no guarded 
command of a module is enabled in some state, then that module has no choice and the values of the variables controlled 
by it remain unchanged in the next state.

Formally, an SRML module mi is defined as a triple mi = (�i, Ii, Ui), where �i ⊆ � is the finite set of Boolean variables 
controlled by mi , Ii a finite set of init guarded commands, such that for all g ∈ Ii , we have ctr(g) ⊆ �i , and Ui a finite set of

10 As mentioned before, not all games can be tested in all tools since, for instance, PRALINE does not support LTL objectives, but only goals expressed 
directly as Büchi conditions.
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module toggle controls x
init
:: � � x′ := �;
:: � � x′ := ⊥;
update
:: ¬x � x′ := �;
:: x � x′ := ⊥;

Fig. 5. Example of module toggle in SRML.

Fig. 6. High-level workflow of EVE.

update guarded commands, such that for all g ∈ Ui , we have ctr(g) ⊆ �i . A guarded command g over a set of variables �

is an expression

g : ϕ � x′
1 := ψ1; . . . ; x′

k := ψk

where the guard ϕ is a propositional logic formula over �, each xi is a member of � and ψi is a propositional logic formula 
over �. Let guard(g) denote the guard of g , thus, in the above rule, we have guard(g) = ϕ . It is required that no variable 
xi appears on the left hand side of more than one assignment statements in the same guarded command, hence no issue 
on the (potentially) conflicting updates arises. The variables x1, . . . , xk are controlled variables in g ∈ Ui and we denote this 
set by ctr(g). If no guarded command of a module is enabled, then the values of all variables in ctr(g) are unchanged. A 
set of guarded commands is said to be disjoint if their controlled variables are mutually disjoint. To make it clearer, here is 
an example of a guarded command:

(p ∧ q)︸ ︷︷ ︸
guard

� p′ := �;q′ := ⊥︸ ︷︷ ︸
action

The guard is the propositional logic formula (p ∧ q), so this guarded command will be enabled if both p and q are true. If 
the guarded command is chosen (to be executed), then in the next time-step, variable p will be assigned true and variable 
q will be assigned false.

Fig. 5 shows a module named toggle that controls a Boolean variable named x. There are two init guarded commands 
and two update guarded commands. The init guarded commands define two choices for the initialisation of variable x: true 
or false. The first update guarded command says that if x has the value of true, then the corresponding choice is to assign 
it to false, while the second command says that if x has the value of false, then it can be assigned to true. Intuitively, the 
module would choose (in a non-deterministic manner) an initial value for x, and then on subsequent rounds toggles this 
value. In this particular example, the init commands are non-deterministic, while the update commands are deterministic. 
We refer to [7] for further details on the semantics of SRML. In particular, in Figure 12 of [7], we detail how to build a 
Kripke structure that models the behaviour of an SRML system. In addition, we associate each module with a goal, which is 
specified as an LTL formula.

At this point, readers might notice that the way SRML modules are defined leads to the possibility of having multiple 
initial states – which appears to contradict the definition of CMGS. However, this is not a problem, since we can always add 
an extra “pre”-initial state whose outgoing edges are labelled according to init guarded commands, and use it as the “real” 
initial state.

Automated temporal equilibrium analysis. Once a multi-agent system is modelled in SRML, it can be seen as a multi-
player game in which players (the modules) use strategies to resolve the non-deterministic choices in the system. EVE uses 
Algorithm 1 to solve Non-Emptiness. The main idea behind this algorithm is illustrated in Fig. 6. The general flow of the 
implementation is as follows. Let GLTL be a game, modelled using SRML, with a set of players/modules N = {1, . . . , n} and 
LTL goals � = {γ1, . . . , γn}, one for each player. Using GLTL we construct an associated concurrent game with parity goals 
GPAR in order to shift reasoning on the set of Nash equilibria of GLTL into the set of Nash equilibria of GPAR. The basic idea 
of this construction is, firstly, to transform all LTL goals in GLTL into deterministic parity word (DPW) automata. To do this, 
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we use LTL2BA tool [43,44] to transform the formulae into nondeterministic Büchi word (NBW) automata. From NBWs, we 
construct the associated deterministic parity word (DPW) automata via construction described in [33]. Secondly, to perform 
a product construction of the Kripke structure that represents GLTL with the collection of DPWs in which the set of Nash 
equilibria of the input game is preserved. With GPAR in our hands, we can then reason about Nash equilibria by solving a 
collection of parity games. To solve these parity games, we use PGSolver tool [45,46]. EVE then iterates through all possible 
set of “winners” W ⊆ N (Algorithm 1 line 4) and computes a punishment region Pun j(GPAR) for each j ∈ L = N\W , with 
which a reduced parity game G−L

PAR = ⋂
j∈L Pun j(GPAR) is built. Notice that for each player j, Pun j(GPAR) need only computed 

once and can be stored, thus resulting in a more efficient running time. Lastly, EVE checks whether there exists a path ρ
in G−L

PAR that satisfies the goals of each i ∈ W . To do this, we translate G−L
PAR into a deterministic Streett automata, whose 

language is empty if and only if so is the set of Nash equilibria of GPAR. For E-Nash problem, we simply need to find a run 
in the witness returned when we check for Non-Emptiness; this can be done via automata intersection.11

EVE was developed in Python and available online from [9]. EVE takes as input a concurrent and multi-agent system 
described in SRML code, with player goals and a property ϕ to be checked specified in LTL. For Non-Emptiness, EVE returns 
“YES” (along with a set of winning players W ) if the set of Nash equilibria in the system is not empty, and returns “NO” 
otherwise. For E-Nash (A-Nash), EVE returns “YES” if ϕ holds on some (every) Nash equilibrium of the system, and “NO” 
otherwise.

In the next subsection, we present some case studies to evaluate the performance of EVE. The case studies are based 
on distributed and concurrent systems that can naturally be modelled as multi-agent systems. We note, however, that such 
case studies bear no special relevance to multi-agent systems research. Instead, our only purpose is to use such case studies 
and multi-agent systems to evaluate EVE ‘s performance, rather than to solve problems of particular relevance in the AI or 
multi-agent systems literatures. Nevertheless, one could easily see that the case studies are based on systems that one can 
imagine to be found in many AI systems nowadays.

8.2. Case studies

In this section, we present two examples from the literature of concurrent and distributed systems to illustrate the 
practical usage of EVE. Among other things, these two examples differ in the way they are modelled as a concurrent game. 
While the first one is played in an arena implicitly given by the specification of the players in the game (as done in [7]), the 
second one is played on a graph, e.g., as done in [47] with the use of concurrent game structures. Both of these models of 
games (modelling approaches) can be used within our tool. We will also use these two examples to evaluate EVE’s practical 
performance and compare it against MCMAS and PRALINE in Section 8.3. Furthermore, since PRALINE and MCMAS use 
different modelling languages – ISPL in the case of MCMAS – we need to translate the examples modelled in SRML into
PRALINE ‘s input language and ISPL. Given the high-level nature of SRML, the translation might introduce exponential 
blowup. However, we argue that this is not a problem from the comparison point of view, since the exponential blowup is 
also unavoidable when building Kripke structures from SRML games.

Gossip protocols. These are a class of networking and communication protocols that mimic the way social networks dis-
seminate information. They have been used to solve problems in many large-scale distributed systems, such as peer-to-peer
and cloud computing systems. Ladin et al. [48] developed a framework to provide high availability services via replication 
which is based on the gossip approach first introduced in [49,50]. The main feature of this framework is the use of replica 
managers (RMs) which exchange “gossip” messages periodically in order to keep the data updated. The architecture of such 
an approach is shown in Fig. 7.

We can model each RM as a module in SRML as follows: (1) When in servicing mode, an RM can choose either to keep 
in servicing mode or to switch to gossiping mode; (2) If it is in gossiping mode and there is at least another RM also in 
gossiping mode,12 since the information during gossip exchange is of (small) bounded size, it goes back to servicing mode 
in the subsequent step. We then set the goal of each RM to be able to gossip infinitely often. As shown in Fig. 8, the module
RM1 controls a variable: s1. Its value being true signifies that RM1 is in servicing mode; otherwise, it is in gossiping mode. 
Behaviour (1) is reflected in the first and second update commands, while behaviour (2) is reflected in the third update 
command. The goal of RM1 is specified with the LTL formula GF ¬s1, which expresses that RM1’s goal is to gossip infinitely 
often: “always” (G) “eventually” (F) gossip (¬s1).

Observe that with all RMs rationally pursuing their goals, they will adopt any strategy which induces a run where each 
RM can gossip (with at least one other RM) infinitely often. In fact, this kind of game-like modelling gives rise to a powerful 
characteristic: on all runs that are sustained by a Nash equilibrium, the distributed system is guaranteed to have two crucial 
non-starvation/liveness properties: RMs can gossip infinitely often and clients can be served infinitely often. Indeed, these 
properties are verified in the experiments; with E-Nash: no Nash equilibrium sustains “all RMs forever gossiping”; and with
A-Nash: in all Nash equilibria at least one of the RM is in servicing mode infinitely often. We also notice that each RM is 
modelled as a non-deterministic open system: non-determinism is used in the first two updated commands, as they have 

11 For A-Nash is straightforward, since it is the dual of E-Nash.
12 The core of the protocol involves (at least) pairwise interactions periodically.
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Fig. 7. Gossip framework structure.

Fig. 8. SRML machine readable code for module RM1 as written in EVE’s input code.

Fig. 9. Gifford’s protocol modelled as a game.

the same guard s1 and therefore will be both enabled at the same time; and the system is open since each module’s state 
space and choices depend on the states of other modules, as reflected by the third updated command.

Replica control protocol. Consensus is a key issue in distributed computing and multi-agent systems. An important appli-
cation domain is in maintaining data consistency. Gifford [51] proposed a quorum-based voting protocol to ensure data 
consistency by not allowing more than one processes to read/write a data item concurrently. To do this, each copy of a 
replicated item is assigned a vote.

We can model a (modified version of) Gifford’s protocol as a game as follows. The set of players N = {1, . . . , n} in 
the game is arranged in a request queue represented by the sequence of states q1, . . . , qn , where qi means that player i
is requesting to read/write the data item. At state qi , other players in N\{i} then can vote whether to allow player i to 
read/write. If the majority of players in N vote “yes”, then the transition goes to q0, i.e., player i is allowed to read/write, 
and otherwise it goes to qi+1.13 The voting process then restarts from q1. The protocol’s structure is shown in Fig. 9. Notice 
that at the last state, qn , there is only one outgoing arrow to q0. As in the previous example, the goal of each player i is 
to visit q0 right after qi infinitely often, so that the desired behaviour of the system is sustained on all Nash equilibria of 
the system: a data item is not concurrently accessed by two different processes and the data is updated in every round. 
The associated temporal properties are automatically verified in the experiments in Section 8.3. Specifically, the temporal 
properties we check are as follows. With E-Nash: there is no Nash equilibrium in which the data is never updated; and, 
with A-Nash: on all Nash equilibria, for each player, its request will be granted infinitely often. Also, in this example, we 
define a module, called “Environment”, which is used to represent the underlying concurrent game structure, shown in 
Fig. 9, where the game is played.

13 We assume arithmetic modulo (|N| + 1) in this example.
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Table 1
Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01
3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06
4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57
5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO
6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO
7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO
8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2
Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02
3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11
4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28
5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO
6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO
7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO
8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

8.3. Experiment I

In order to evaluate the practical performance of our tool and approach (against MCMAS and PRALINE), we present 
results on the temporal equilibrium analysis for the examples in Section 8.2. We ran the tools on the two examples with 
different numbers of players (“P”), states (“S”), and edges (“E”). The experiments were obtained on a PC with Intel i5-4690S 
CPU 3.20 GHz machine with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86_64. We report the running 
time14 for solving Non-Emptiness (“ν”), E-Nash (“ε”), and A-Nash (“α”). For the last two problems, since there is no direct 
support in PRALINE and MCMAS, we used the reduction of E/A-Nash to Non-Emptiness presented in [38]. Intuitively, the 
reduction is as follows: given a game G and formula ϕ , we construct a new game H with two additional agents, say n + 1
and n + 2, with goals γn+1 = ϕ ∨ (p ↔ q) and γn+2 = ϕ ∨ ¬(p ↔ q), where �n+1 = {p} and �n+2 = {q}, p and q are fresh 
Boolean variables. This means that it is the case NE(H) �= ∅ if and only if there exists a Nash equilibrium run in G satisfying 
ϕ .

From the experiment results shown in Table 1 and 2, we observe that, in general, EVE has the best performance, followed 
by PRALINE and MCMAS. Although PRALINE performed better than MCMAS, both struggled (timed-out15) with inputs with 
more than 100 edges, while EVE could handle up to 6000 edges (for Non-Emptiness).

8.4. Experiment II

This experiment is taken from the motivating examples in [28]. Suppose the systems shown in Fig. 10 and 11 represents 
a 3-player game, where each transition is labelled by the actions x, y, z of player 1, 2, and 3, respectively, an asterisk ∗
being a wildcard. The goals of the players can be represented by the LTL formulae γ1 = Fp, γ2 = Fq, and γ3 = G¬(p ∨ q). 
The system in Fig. 10 has a Nash equilibrium, whereas no (non-bisimulation-invariant strategies) Nash equilibria exists in 
the (bisimilar) system in Fig. 11.

In this experiment, we extended the number of states by adding more layers to the game structures used there in order 
to test the practical performance of EVE, MCMAS, and PRALINE. The experiments were performed on a PC with Intel i7-
4702MQ CPU 2.20 GHz machine with 12 GB of RAM running Linux kernel version 4.14.16-300.fc26.x86_64. We divided the 
test cases based on the number of Kripke states and edges; then, for each case, we report (i) the total running time16

(“time”) and (ii) whether the tools find any Nash equilibria (“NE”).
Table 3 shows the results of the experiments on the example in which the model of strategies that depends only on the 

run (sequence of states) of the game (run-based strategies [28]) cannot sustain any Nash equilibria, a model of strategies 
that is not invariant under bisimilarity. Indeed, since MCMAS and PRALINE use this model of strategies, both did not find 

14 To carry out a fairer comparison (since PRALINE does not accept LTL goals), we added to PRALINE’s running time the time needed to convert LTL
games into its input.
15 Time-out was fixed to be 7200 seconds.
16 Similarly to Experiment I (Section 8.3), we added to PRALINE’s running time the time needed to convert LTL games into its input to carry out a fairer 

comparison.
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Fig. 10. A 3-player game with Nash equilibrium.
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Fig. 11. A 3-player game without (non-bisimulation-invariant strategies) Nash equilibria.

any Nash equilibria in the game, as shown in Table 3. EVE, which uses a model of strategies that not only depends on the 
run of the game but also on the actions of players (computation-based [28]), found a Nash equilibrium in the game. We can 
also see that EVE outperformed MCMAS on games with 14 or more states. In fact, MCMAS timed-out17 on games with 17 
states or more, while EVE kept working efficiently for games of bigger size. We can also observe that PRALINE performed 
almost as efficiently as EVE in this experiment, although EVE performed better in both small and large instances of these 
games.

17 We fixed the time-out value to be 3600 seconds (1 hour).
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Table 3
Example with no Nash equilibrium.

States Edges
MCMAS EVE PRALINE

Time (s) NE Time (s) NE Time (s) NE

5 80 0.04 No 0.75 Yes 0.77 No
8 128 0.24 No 2.99 Yes 2.06 No
11 176 6.28 No 3.86 Yes 4.42 No
14 224 273.14 No 7.46 Yes 8.53 No
17 272 TO – 13.31 Yes 15.33 No
.
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.

.

.

.
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.

.

.
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.
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.

.

50 800 TO – 655.80 Yes 789.77 No

Table 4
Example with Nash equilibria.

States Edges
MCMAS EVE PRALINE

Time (s) NE Time (s) NE Time (s) NE

6 96 0.02 Yes 1.09 Yes 1.19 Yes
9 144 0.77 Yes 3.36 Yes 3.76 Yes
12 192 65.31 No 7.45 Yes 8.89 Yes
15 240 TO – 15.52 Yes 17.72 Yes
18 288 TO – 30.06 Yes 30.53 Yes
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

51 816 TO – 1314.47 Yes 1563.79 Yes

In Table 4, we used the example in which Nash equilibria is sustained in run-based strategies. As shown in the table,
MCMAS found Nash equilibria in games with 6 and 9 states. However, since MCMAS uses imperfect recall, when the third 
layer was added (case with 12 states in Table 4) to the game, it could not find any Nash equilibria. Regarding running 
times, EVE outperformed MCMAS from the game with 12 states and beyond, where MCMAS timed-out on games with 15 
or more states. As for PRALINE, it performed comparably to EVE in this experiment, but again, EVE performed better in all 
instances.

8.5. Experiment III

This experiment is based on the example previously presented in Section 2. For this particular experiment, we assume 
that initially the agents are located at opposing corners of the grid; specifically, agent 1 is located at the top-left corner 
(coordinate (0, 0)) and agent 2 at the bottom-right corner (n − 1, n − 1). A number of obstacles are also placed (uniformly) 
randomly on the grid. We use a binary encoding to represent the spatial information of the grid world which includes the 
grid coordinates, as well as the obstacles and the agents locations. For instance, to encode a position of an agent 1 in 4 × 4
grid, we need 4 Boolean variables arranged as a tuple pos1 = 〈x1

0, x
1
1, y

1
0, y

1
1〉. An instance of such a tuple pos1 = 〈0, 1, 1, 0〉

means that agent 1 is at (2, 1). For each time step and i ∈ {1, 2}, the update guarded command set Ui is such a way that 
agent i can only move horizontally and vertically, 1 step at a time. Furthermore, the commands in Ui respect the legality of 
movement, i.e., agent i cannot move out of bound or into an obstacle. The goal of each agent can be expressed by the LTL
formulae

γ1 = F(
∧

i∈{0,...,n−1}
x1

i ∧
∧

i∈{0,...,n−1}
y1

i )

and

γ2 = F(
∧

i∈{0,...,n−1}
¬x2

i ∧
∧

i∈{0,...,n−1}
¬y2

i ).

A safety specification (no more than one agent occupying the same position at the same time) can be expressed by the 
following LTL formula:

ϕ = G¬(
∧

i∈{0,...,n−1}
(x1

i ↔ x2
i ) ∧

∧
i∈{0,...,n−1}

(y1
i ↔ y2

i )).

The experiment was obtained on a PC with Intel i5-4690S CPU 3.20 GHz machine with 8 GB of RAM running Linux 
kernel version 4.12.14-300.fc26.x86_64. We varied the size of the grid world (“size”) from 3 × 3 to 10 × 10, each with a 
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Table 5
Grid world experiment results.

Size # Obs KS KE GS

3 3 15(13,18) 44(32,72) 60(53,73)

4 6 40(32,52) 150(98,200) 156(121,209)

5 10 94(61,125) 398(242,512) 376(453,741)

6 15 155(113,185) 655(450,800) 619(453,741)

7 21 228(181,290) 994(800,1250) 909(725,1161)

8 28 491(394,666) 2297(1922,2888) 1963(1577,2665)

9 36 564(269,765) 2687(1352,3698) 2256(1077,3061)

10 45 916(730,1258) 4780(3528,6498) 3657(2921,5033)

Size GE ν (s) ε (s)

3 173(129,289) 0.44(0.19,1.14) 1.21(0.5,2.63)

4 595(379,801) 0.98(0.63,1.16) 1.57(1.01,2.24)

5 1591(969,2049) 4.73(2.62,6.22) 22.51(18.22,26.25)

6 2622(1801,3201) 9.53(7.13,11.49) 32.32(26.05,37.35)

7 3969(3161,5001) 17.69(13.81,21.58) 48.90(39.70,59.50)

8 9190(7689,11553) 50.91(38.38,72.49) 121.33(95.03,167.25)

9 10748(5409,14793) 100.94(45.81,137.91) 6002.80(5477.63,6374.26)

10 19102(14113,25993) 211.30(152.74,311.43) 6871.16(6340.64,7650.87)

Fig. 12. Plots from Table 5. Y-axis is in logarithmic scale.

fixed number of obstacles (“# Obs”), randomly distributed on the grid. We report the number of Kripke states (“KS”), Kripke 
edges (“KE”), GPAR states (“GS”), GPAR edges (“GE”), Non-Emptiness execution time (“ν”), and E-Nash execution time (“ε”). 
We ran the experiment for five replications, and report the average (ave), minimum (min), and maximum (max) times from 
the replications. The results are reported in Table 5, with the following format: ave(min, max).

From the experiment results, we see that EVE works well for Non-Emptiness up until size 10. From the plots in Fig. 12, 
we can clearly see that the values of each variable, except for ε , grow exponentially. For ε (E-Nash), however, it seems 
to grow faster than the rest. Specifically, it is clearly visible in transitions between numbers that have different size of bit 
representation, i.e., 4 to 5 and 8 to 9.18 These jumps correspond to the time used to build deterministic parity automata on 
words from LTL properties to be checked in E-Nash, which is essentially, bit-for-bit comparisons between the position of 
agent 1 and 2.

From the experiments shown in this section it is also clear that the bottleneck in the performance is the translation 
of LTL goals and the high-level description of the game into the underlying parity game. Once an explicit parity game is 
constructed, then the performance improves radically. This result is perfectly consistent with what the theoretical complexity 
of the decision procedure predicts: our algorithm works in doubly-exponential time in the size of the goals of the players, 
while it is only singly-exponential in the size of the SRML specification. These two exponential-time reductions are in fact 
optimal, so there is no hope that they can be improved, at least in theory. On the other hand, the actual subroutine that 
finds a Nash equilibrium and computes players’ strategies from the parity games representation of the problem is rather 
efficient in theory – but still not known to be in polynomial time using the best algorithms to solve parity games. Then, 
it is clear that a natural way to make rational verification a feasible problem, in theory, is to look at cases where goals 
and/or game representations are simpler. Such study is conducted in [52], where several positive results on the complexity 
of solving the rational verification problem are obtained.

18 Since the grid coordinate index starts at 0, the “actual” transitions are 3 to 4 and 7 to 8.
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9. Concluding remarks and related work

This paper contains a complete study, from theory to implementation, of the temporal equilibrium analysis of multi-agent 
AI systems formally modelled as multi-player games. The two main contributions of the paper are: (1) a novel and optimal 
decision procedure, based on the solution of parity games, that can be used to solve both the rational verification and the 
automated synthesis problems for multi-player games; and (2) a complete implementation of the general game-theoretic 
modelling and reasoning framework – with full support of goals expressed as LTL formulae and high-level game descriptions 
in SRML – which is available online. Our work builds on several previous results in the computer science (synthesis and 
verification) and AI literatures (multi-agent systems). Relevant related literature will be discussed next.

Equilibrium analysis in multi-agent systems. Rational verification was proposed as an complementary verification 
methodology to conventional methods, such as model checking. A legitimate question is, then, when is rational verifica-
tion an appropriate verification approach? A possible answer is given next. The verification problem [1], as conventionally 
formulated, is concerned with checking that some property, usually defined using a modal or a temporal logic [53], holds 
on some or on every computation run of a system. In a game-theoretic setting, this can be a very strong requirement – 
and in some cases even inappropriate – since only some computations of the system will arise (be sustained) as the result 
of agents in the system choosing strategies in equilibrium, that is, due to strategic and rational play. It was precisely this 
concern that motivated the rational verification approach [7,8]. In rational verification, we ask if a given temporal property 
holds on some or every computation run that can be sustained by agents choosing Nash equilibrium strategies. Rational ver-
ification can be reduced to the Non-Emptiness problem, as stated in this paper; cf., [38]. As a consequence, along with the 
polynomial transformations in [38], our results provide a complete framework (theory, algorithms, and implementation) for 
automated temporal equilibrium analysis, specifically, to do rational synthesis and formal verification of logic-based multi-
agent systems. The framework, in particular, provides a concrete and algorithmic solution to the rational synthesis problem 
as studied in [14], where the Boolean case (iterated games where players control Boolean variables, whose valuations define 
sequences of states in the game, i.e., the plays in the game) was given an interesting automata-theoretic solution via (an 
extension of) Strategy Logic [16].

Automata and logic. In computer science, a common technique to reason about Nash equilibria in multi-player games 
is using alternating parity automata on infinite trees (APTs [18]). This approach is used to do rational synthesis [14,54]; 
equilibrium checking and rational verification [8,15,7]; and model checking of logics for strategic reasoning capable to 
specify the existence of a Nash equilibrium in concurrent game structures [47], both in two-player games [16,55] and in 
multi-player games [56,12]. In cases where players’ goals are simpler than general LTL formulae, e.g., for reachability or 
safety goals, alternating Büchi automata can be used instead [36]. Our technique is different from all these automata-based 
approaches, and in some cases more general, as it can be used to handle either a more complex model of strategies or a more 
complex type of goals, and delivers an immediate procedure to synthesise individual strategies for players in the game, 
while being amenable to implementation.

Tools and algorithms. In theory, the kind of equilibrium analysis that can be done using MCMAS [40,57,58] and PRA-
LINE [39,36] rely on the automata-based approach. However, the algorithms that are actually implemented have a different 
flavour. MCMAS uses a procedure for SL which works as a labelling algorithm since it only considers memoryless strate-
gies [58]. On the other hand, PRALINE, which works for Büchi definable objectives, uses a procedure based on the “suspect 
game” [36]. Despite some similarities between our construction and the suspect game, introduced in [36], the two pro-
cedures are substantially different. Unlike our procedure, the suspect game is a standard two-player zero-sum turn-based 
game H(G, π), constructed from a game G and a possible path π , in which one of the players (“Eve”) has a winning strat-
egy if, and only if, π can be sustained by a Nash equilibrium in G . The overall procedure in [36] relies on the construction 
of such a game, whose size (space complexity) is exponential in the number of agents [36, Section 4.3]. Instead, our pro-
cedure solves, independently, a collection of parity games that avoids an exponential use of space but may require to be 
executed exponentially many times. Key to the correctness of our approach is that we deal with parity conditions, which 
are prefix-independent, ensuring that punishment strategies do not depend on the history of the game. Regarding similar-
ities, our procedure also checks for the existence of a path sustained by a Nash Equilibrium, but our algorithm does this 
for every subset W ⊆ N of agents, if needed. Doing this (i.e., trading exponential space for exponential time), at every call 
of this subroutine, our algorithm avoids building an exponentially sized game, like H. On the other hand, from a practical 
point of view, avoiding the construction of such an exponential sized game leads to better performance (running times), 
even in cases where no Nash equilibrium exists, when our subroutine is necessarily called exponentially many times. In 
addition to all of the above, neither the algorithm used for MCMAS nor the one used for PRALINE computes pure Nash 
equilibria in a bisimulation-invariant framework, as our procedure does. While MCMAS and PRALINE are the two closest 
tools to EVE, they are not the only available options to reason about games. For instance, PRISM-games [59], EAGLE [60], 
and UPPAAL [61] are other interesting tools to reason about games. PRISM-games allows one to do strategy synthesis for 
turn-based stochastic games as well as model checking for long-run, average, and ratio rewards properties. Only until very 
recently, PRISM-games had no support of equilibrium reasoning, but see [62]. EAGLE is a tool specifically designed to reason 
about pure Nash equilibria in multi-player games. EAGLE considers games where goals are given as CTL formulae and allows 
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one to check if a given strategy profile is a Nash equilibrium of a given multi-agent system. This decision problem, called
Membership within the rational verification framework [8], is, theoretically, simpler than Non-Emptiness: while the former 
can be solved in EXPTIME (for branching-time goals expressed using CTL formulae [13]), the latter is 2EXPTIME-complete 
for LTL goals, and even 2EXPTIME-hard for CTL goals and nondeterministic strategies [13]. UPPAAL is another tool that can 
be used to analyse equilibrium behaviour in a system [63,64]. However, UPPAAL differs from EVE in various critical ways: 
e.g., it works in a quantitative setting, uses statistical model checking, and most importantly, computes approximate Nash 
equilibria of a game.

The role of bisimilarity. One crucial aspect of our approach to rational verification and synthesis is the role of bisimi-
larity [65,31,66,67]. Bisimulation is the most important type of behavioural equivalence relation considered in computer 
science, and in particular two bisimilar systems will satisfy the same temporal logic properties. In our setting, it is highly 
desirable that properties which hold in equilibrium are sustained across all bisimilar systems to P1, . . . , Pn . That is, that for 
every (temporal logic) property ϕ and every system component P ′

i modelled as an agent in a multi-player game, if P ′
i is 

bisimilar to Pi ∈ {P1, . . . , Pn}, then ϕ is satisfied in equilibrium – that is, on a run induced by some Nash equilibrium of the 
game – by P1, . . . , Pi, . . . Pn if and only if is also satisfied in equilibrium by P1, . . . , P ′

i, . . . , Pn , the system in which Pi is 
replaced by P ′

i , that is, across all bisimilar systems to P1, . . . , Pn . This property is called invariance under bisimilarity. Unfor-
tunately, as shown in [34,28], the satisfaction of temporal logic properties in equilibrium is not invariant under bisimilarity, 
thus posing a challenge for the modular and compositional reasoning of concurrent systems, since individual system compo-
nents in a concurrent system cannot be replaced by (behaviourally equivalent) bisimilar ones, while preserving the temporal 
logic properties that the overall multi-agent system satisfies in equilibrium. This is also a problem from a synthesis point of 
view. Indeed, a strategy for a system component Pi may not be a valid strategy for a bisimilar system component P ′

i . As a 
consequence, the problem of building strategies for individual processes in the concurrent system P1, . . . , Pi, . . . Pn may not, 
in general, be the same as building strategies for a bisimilar system P1, . . . , P ′

i, . . . Pn , again, deterring any hope of being able 
to do modular reasoning on concurrent and multi-agent systems. These problems were first identified in [34] and further 
studied in [28]. However, no algorithmic solutions to these two problems were presented in either [34] or [28]. Specifically, 
in this paper, bisimilarity was exploited in two ways. Firstly, our construction of punishment strategies (used in the char-
acterisation of Nash equilibrium given by Theorem 3) assumes that players have access to the history of choices that other 
players in the game have made. As shown in [28,29], with a model of strategies where this is not the case, the preservation 
of Nash equilibria in the game, as well as of temporal logic properties in equilibrium, may not be guaranteed. Secondly, 
our implementation in EVE guarantees that any two games whose underlying CGSs are bisimilar, and therefore should be 
regarded as observationally equivalent from a concurrency point of view, will produce the same answers to the rational 
verification and automated synthesis problems. It is also worth noting that even though bisimilarity is probably the most 
widely used behavioural equivalence in concurrency, in the context of multi-agent systems other relations may be preferred, 
for instance, equivalence relations that take a detailed account of the independent interactions and behaviour of individual 
components in a multi-agent system. In such a setting, “alternating” relations with natural ATL∗ characterisations have been 
studied [68]. Alternating bisimulation is very similar to bisimilarity on labelled transition systems [65,31], only that when 
defined on CGSs, instead of action profiles (directions) taken as possible transitions, one allows individual player’s actions, 
which must be matched in the bisimulation game. Because of this, it immediately follows that any alternating bisimulation 
as defined in [68] is also a bisimilarity as defined here. Despite having a different formal definition, a simple observation 
can be made: Nash equilibria are not preserved by the alternating (bisimulation) equivalence relations in [68] either, which 
discourages the use of these even stronger equivalence relations for multi-agent systems. In fact, as discussed in [69], the 
“right” notion of equivalence for games (which can be indirectly used as an observational equivalence between multi-agent 
systems) and their game theoretic solution concepts is, undoubtedly, an important and interesting topic of debate, which 
deserves to be investigated further.

Some features of our framework. Unlike other approaches to rational synthesis and temporal equilibrium analysis, e.g. [58,
36,14,7], we employ parity games [19], which are an intuitively simple verification model with an abundant associated set of 
algorithmic solutions [70]. In particular, strategies in our framework, as in [7], can depend on players’ actions, leading to a 
much richer game-theoretic setting where Nash equilibrium is invariant under bisimilarity [28,29], a desirable property for 
concurrent and reactive systems [65,31,66,67]. Our reasoning and verification approach applies to multi-player games that 
are concurrent and synchronous, with perfect recall and perfect information, and which can be represented in a high-level, 
succinct manner using SRML [10]. In addition, the technique developed in this paper, and its associated implementation, 
considers games with LTL goals, deterministic and pure strategies, and dichotomous preferences. In particular, strategies in 
these games are assumed to be able to see all past players’ actions. We do not consider mixed or nondeterministic strategies, 
or goals given by branching-time formulae. We also do not allow for quantitative or probabilistic systems, e.g., such as 
stochastic games or similar game models. We note, however, that some of these aspects of our reasoning framework have 
been placed to avoid undesirable computational properties. For instance, it is known that checking for the existence of a 
Nash equilibrium in multi-player games like the ones we consider is an undecidable problem if either imperfect information 
or (various kinds of) quantitative/probabilistic information is allowed [17,71].
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Future work. This paper gives a solution to the temporal equilibrium problem (both automated synthesis and formal 
verification) in a noncooperative setting. In future work, we plan to investigate the cooperative games setting [72]. The paper 
also solves the problem in practice for perfect information games. We also plan to investigate if our main algorithms can 
be extended to decidable classes of imperfect information games, for instance, as those studied to model the behaviour of 
multi-agent systems in [17,73–75]. Whenever possible, such studies will be complemented with practical implementations 
in EVE. Finally, extensions to epistemic systems and quantitative information in the context of multi-agent systems may be 
another avenue for further applications [76,77], as well as settings with more complex preference relations [13,14,78,79], 
which would provide a strictly stronger modelling power.
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