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ABSTRACT
The rise of data mining and machine learning use in many ap-

plications has brought new challenges related to classification.

Here, we deal with the following challenge: how to interpret and

understand the reason behind a classifier’s prediction. Indeed,

understanding the behaviour of a classifier is widely recognized

as a very important task for wide and safe adoption of machine

learning and data mining technologies, especially in high-risk

domains, and in dealing with bias. We present a preliminary work

on a proposal of using the Ontology-Based Data Management

paradigm for explaining the behavior of a classifier in terms of

the concepts and the relations that are meaningful in the domain

that is relevant for the classifier.

1 INTRODUCTION
One of the problems in processing information ethically is the

perpetuation and amplification of unfair biases existing in train-

ing data and in the outcome of classifiers.

It is well known that many learning algorithms (data analytics,

data mining, machine learning, ML) base their predictions on

training data and improve them with the growth of such data.

In a typical project, the creation and curation of training data

sets is largely a human-based activity and involve several people:

domain experts, data scientists, machine learning experts, etc. In

other words, data-related human design decisions affect learning

outcomes throughout the entire process pipeline, even if at a

certain point these decisions seem to disappear in the black-box

“magic” approach of ML algorithms. On the other hand, it is now

gaining attention the fact that humans typically suffer from con-

scious and unconscious biases and current historical data used in

training set very often incorporate such biases, so perpetuating

and amplifying existing inequalities and unfair choices. While

researchers of different areas (from philosophy to computer sci-

ence passing through social sciences and law) have begun a rich

discourse on this problem, concrete solutions on how to address

it by discovering and eliminating unintended unfair biases are

still missing. A critical aspect in assessing and addressing bias

is represented by the lack of transparency, accountability and

human-interpretability of the ML algorithms that make overly

difficult to fully understand the expected outcomes. A famous

example is the COMPAS algorithm used by the Department of

Corrections in Wisconsin, New York and Florida that has led to

harsher sentencing toward African Americans [1].

In this paper we address the problem of providing explana-

tions for supervised classification. Supervised learning is the task

of learning a function that maps an input to an output based on
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input-output pairs provided as examples. When applied to classi-

fication, the ultimate goal of supervised learning is to construct

algorithms that are able to predict the target output (i.e., the class)

of the proposed inputs. To achieve this, the learning algorithm

is provided with some training examples that demonstrate the

intended relation of input and output values. Then the learner is

supposed to approximate the correct output, so as to be able to

classify instances that have not been shown during training.

The rise of machine learning use in many applications has

brought new challenges related to classification. Here, we deal

with the following challenge: how to interpret and understand

the reason behind a classifier’s prediction. Indeed, understanding

the behaviour of a classifier is recognized as a very important

task for wide and safe adoption of machine learning and data

mining technologies, especially in high-risk domains, and, as we

discussed above, in dealing with bias.

In this paper we present a preliminary work on this subject,

based on the use of semantic technologies. In particular, we as-

sume that the classification task is performed in an organization

that adopts an Ontology-Based Data Management (OBDM) ap-

proach [15, 16]. OBDM is a paradigm for accessing data using a

conceptual representation of the domain of interest expressed as

an ontology. The OBDM paradigm relies on a three-level architec-

ture, consisting of the data layer, the ontology, and the mapping

between the two.

• The ontology is a declarative and explicit representation

of the domain of interest for the organization, formulated

in a Description Logic (DL) [2, 7], so as to take advantage

of various reasoning capabilities in accessing data.

• The data layer is constituted by the existing data sources

that are relevant for the organization.

• The mapping is a set of declarative assertions specifying

how the sources in the data layer relate to the ontology.

Consequently, anOBDM specification is a tripleJ = ⟨O,S,M⟩
which, together with an S-database 𝐷 , form a so-called OBDM

system Σ = ⟨J , 𝐷⟩. Given such a system Σ, suppose that 𝜆 is

the result of a classification task carried out by any actor, e.g., a

human or a machine, and that the objects involved in the classifi-

cation task are represented as tuples in the S-database 𝐷 , which

we assume relational.

In particular, in this work we consider a binary classifier, and

therefore we regard 𝜆 as a partial function 𝜆 : dom(𝐷)𝑛 →
{+1,−1}, where 𝑛 ≥ 1 is an integer. We denote by 𝜆+ (resp.,

𝜆−) the set of tuples that have been classified positively (resp.,

negatively), i.e., 𝜆+ = {®𝑡 ∈ dom(𝐷)𝑛 | 𝜆(®𝑡) = +1} (resp., 𝜆− =

{®𝑡 ∈ dom(𝐷)𝑛 | 𝜆(®𝑡) = −1}).
We observe that another view of the partial function 𝜆 is that

of a training set. In this case, 𝜆+ represents the tuples tagged

positively during the classifier training, while 𝜆− represents the
tuples tagged negatively.



Intuitively, our goal is to derive an expression over O that

semantically describes the partial function 𝜆 in the best way w.r.t.

Σ. In other words, the main task in our framework is searching

for a “good” definition of 𝜆 using the concepts and the roles of

the ontology. Without loss of generality, we consider such an

expression to be a query 𝑞 over O, and we formalize the notion of

“semantically describing” 𝜆 by requiring that the certain answers

to 𝑞 w.r.t. Σ include all the tuples in 𝜆+ (or, as many tuples in 𝜆+

as possible), and none of the tuples in 𝜆− (or, as few tuples in 𝜆−

as possible).

Following the terminology of some recent papers, the goal

of our framework can be generally described as the reverse en-
gineering task of finding a describing query, from a set of ex-

amples in a database. The roots of this task can be found in

the Query By Example (QBE) approach for classical relational

databases [3, 4, 18, 19]. In a nutshell, such an approach allows a

user to explore the database by providing a set of positive and

negative examples to the system, implicitly referring to the query

whose answers are all the positive examples and none of the

negatives. This idea has also been studied by the Description

Logics (DLs) community, with a particular attention to the line

of research of the so-called concept learning. In particular, the

work in [13] has an interesting characterization of the complex-

ity of learning an ontology concept, formulated in expressive

DLs, from positive and negative examples. We also mention the

concept learning tools in [5, 12, 17], that include several learning

algorithms and support an extensive range of DLs, even expres-

sive ones such as ALC and ALCQ. Finally, we consider the
work in [14] to be related to our work. The authors study the

problem of deriving (unions of) conjunctive queries, with ontolo-

gies formulated in Horn-ALCI, deriving algorithms and tight

complexity bounds.

Our work is focused on the Ontology-Based Data Manage-

ment (OBDM) paradigm [6, 11]. Having the layer for linking the

data to the ontology is a non trivial extension of the problem,

that has important consequences, as we will show in a follow-

ing section of this paper. The goal of this paper is to present a

general framework for explaining a classifier by means of an

ontology, that can be adapted to several different contexts. For

this reason, an important aspect of our framework, is the pos-

sibility of defining a number of criteria one wants the output

query to be optimized on. This flexibility, makes it possible to

derive completely different solutions, depending on the specific

criteria in use. Specifically, given an OBDM system and a set of

positive and negative examples, the goal of the framework could

be to find a query over the ontology whose answers include all

the positive examples and none of the negatives. However, we

consider reasonable for some applications that one may want

to relax this requirement, and allow the framework to find a

query whose answers are as similar as possible to the positive

examples, includes only a small fraction of the negatives, and

enjoys additional predefined criteria.

2 PRELIMINARIES
Given a schema S, an S-database 𝐷 is a finite set of atoms 𝑠 (®𝑐),
where 𝑠 is an 𝑛-ary predicate symbol of S, and ®𝑐 = (𝑐1, . . . , 𝑐𝑛) is
an 𝑛-tuple of constants.

As mentioned earlier, we distinguish between the specification

of an OBDM system, and the OBDM system itself (cf. Figure 1).

An OBDM specification J determines the intensional level of

the system, and is expressed as a triple ⟨O,S,M⟩, where O is

Figure 1: OBDM Specification and System

an ontology, S is the schema of the data source, andM is the

mapping between S and O. Specifically,M consists of a set of

mapping assertions, each one relating a query over the source

schema to a query over the ontology. An OBDM system Σ =

⟨J , 𝐷⟩ is obtained by adding to J an extensional level, which is

given in terms of an S-database 𝐷 , which represents the data at

the source, and is structured according to the schema S.
The formal semantics of ⟨J , 𝐷⟩ is specified by the setMod𝐷 (J)

of its models, which is the set of (logical) interpretations I for O
such that I is a model of O, i.e., it satisfies all axioms in O, and
⟨𝐷,I⟩ satisfies all the assertions inM. The satisfaction of a map-

ping assertion depends on its form, which is meant to represent

semantic assumptions about the completeness of the source data

with respect to the intended ontology models. Specifically, sound
(resp., complete, exact) mappings capture sources containing a

subset (resp., a superset, exactly the set) of the expected data.

In OBDM, the main service to be provided by the system is

query answering. The user poses queries by referring only to

the ontology, and is therefore masked from the implementation

details and the idiosyncrasies of the data source. The fact that the

semantics of ⟨J , 𝐷⟩ is defined in terms of a set of models makes

the task of query answering involved. Indeed, query answering

cannot be simply based on evaluating the query expression over

a single interpretation, like in traditional databases. Rather, it

amounts to compute the so-called certain answers, i.e., the tuples
that satisfy the query in all interpretations in Mod𝐷 (J), and
has therefore the characteristic of a logical inference task. More

formally, given a OBDM specification J = ⟨O,S,M⟩, a query
𝑞O over O, and an S-database 𝐷 , we define the certain answers
of 𝑞O w.r.t. J and 𝐷 , denoted by cert𝐷

𝑞O ,J , as the set of tuples
®𝑡

of S-constants such that ®𝑡 ∈ 𝑞𝐵O , for every 𝐵 ∈ Mod𝐷 (J). Obvi-
ously, the computation of certain answers must take into account

the semantics of the ontology, the knowledge expressed in the

mapping, and the content of the data source. Designing efficient

query processing algorithms is one of the main challenges of

OBDM. Indeed, an OBDM framework is characterized by three

formalisms:

(1) the language used to express the ontology;

(2) the language used for queries;

(3) the language used to specify the mapping.

and the choices made for each of the three formalisms affect

semantic and computational properties of the system.



The axioms of the ontology allow one to enrich the informa-

tion coming from the source with domain knowledge, and hence

to infer additional answers to queries. The language used for

the ontology deeply affects the computational characteristics

of query answering. For this reason, instead of expressing the

ontology in first-order logic (FOL), one adopts tailored languages,

typically based on Description Logics (DLs), which ensure decid-

ability and possibly efficiency of reasoning.

Also, the use of FOL (i.e., SQL) as a query language, immedi-

ately leads to undecidability of query answering, even when the

ontology consists only of an alphabet (i.e., it is a flat schema), and

when the mapping is of the simplest possible form, i.e., it spec-

ifies a one-to-one correspondence between ontology elements

and database tables. The language typically adopted is Union

of Conjunctive Queries (UCQs), i.e., FOL queries expressed as a

union of select-project-join SQL queries.

With respect to mapping specification, the incompleteness of

the source data is captured correctly by mappings that are sound.

Moreover, allowing to mix sound mapping assertions with com-

plete or exact ones leads to undecidability of query answering,

even when only CQs are used in queries and mapping assertions,

and the ontology is simply a flat schema. As a consequence, all

proposals for OBDM frameworks so far, including the one in this

paper, assume that mappings are sound. In addition, the concern

above on the use of FOL applies also for the ontology queries in

the mapping. Note instead, that the source queries in the mapping

are directly evaluated over the source database, and hence are

typically allowed to be arbitrary (efficiently) computable queries.

3 THE FRAMEWORK
As we said in the introduction, we consider the result of a binary

classification task or the characterization of a training set for a

classifier as a partial function 𝜆 : dom(𝐷)𝑛 → {+1,−1}, where
𝑛 ≥ 1 is an integer. We remind the reader that we denote by 𝜆+

(resp., 𝜆−) the set of tuples that have been classified positively

(resp., negatively), i.e., 𝜆+ = {®𝑡 ∈ dom(𝐷)𝑛 | 𝜆(®𝑡) = +1} (resp.,
𝜆− = {®𝑡 ∈ dom(𝐷)𝑛 | 𝜆(®𝑡) = −1}).

Before formally defining when a query over O semantically

describes 𝜆, we introduce some preliminary notions.

Definition 3.1. LetW be a set of atoms. We say that an atom

𝛼 is reachable fromW if there exists an atom 𝛽 ∈ W such that

there is a constant 𝑐 ∈ dom(𝐷) that appears in both 𝛼 and 𝛽 . □

We now define which are the relevant atoms of an S-database
𝐷 w.r.t. a tuple ®𝑡 ∈ dom(𝐷)𝑛 . To be as general as possible, we

introduce a parametric notion of border of radius 𝑟 , where the

parameter 𝑟 is a natural number whose intended meaning is to

indicate how far one is interested in going for identifying an

atom as relevant.

Definition 3.2. Let 𝐷 be an S-database, and let ®𝑡 be a tuple in
dom(𝐷)𝑛 . Consider the following definition:
• W®𝑡,0 (𝐷) = {𝛼 ∈ 𝐷 | 𝛼 has a constant 𝑐 appearing in ®𝑡}
• W®𝑡, 𝑗+1 (𝐷) = {𝛼 ∈ 𝐷 | 𝛼 is reachable fromW®𝑡, 𝑗 }

Then, for a natural number 𝑟 , the border of radius 𝑟 of ®𝑡 in 𝐷 ,

denoted by B®𝑡,𝑟 (𝐷), is:

B®𝑡,𝑟 (𝐷) =
⋃

0≤𝑖≤𝑟
W®𝑡,𝑖 (𝐷) .

□

We illustrate the notion of border of radius with an example.

Example 3.3. Let the source database be 𝐷 = {R(a,b), S(a,c),

Z(c,d), W(d,e), W(e,h), R(f,g)}, and let ®𝑡 = ⟨a⟩. We have that:

• W®𝑡,0 (𝐷) = {𝑅(𝑎, 𝑏), 𝑆 (𝑎, 𝑐)}
• W®𝑡,1 (𝐷) = {𝑍 (𝑐, 𝑑)}
• W®𝑡,2 (𝐷) = {𝑊 (𝑑, 𝑒)}

Finally, the border of radius 2 of ®𝑡 in 𝐷 is B®𝑡,2 (𝐷) =

{𝑅(𝑎, 𝑏), 𝑆 (𝑎, 𝑐), 𝑍 (𝑐, 𝑑),𝑊 (𝑑, 𝑒)}. □

With the above notion at hand, we now define when a query

𝑞O over the ontology O matches (w.r.t. an OBDM specification

J ) a borderB®𝑡,𝑟 (𝐷) for a radius 𝑟 , a tuple ®𝑡 , and a source database
𝐷 .

Definition 3.4. A query 𝑞O J -matches a border B®𝑡,𝑟 (𝐷) of

radius 𝑟 of a tuple ®𝑡 in a source database 𝐷 , if ®𝑡 ∈ certB®𝑡,𝑟 (𝐷)
𝑞O ,J . □

The next proposition establishes how FOL queries behave

when the radius 𝑟 of a border B®𝑡,𝑟 (𝐷) increments.

Proposition 3.5. Let J = ⟨O,S,M⟩ be an OBDM specifica-
tion, B®𝑡,𝑟 (𝐷) be a border of radius 𝑟 of a tuple ®𝑡 in an S-database
𝐷 , and 𝑞O be a FOL query over O. If 𝑞O J -matches B®𝑡,𝑟 (𝐷), then
𝑞O J -matches B®𝑡,𝑟+1 (𝐷).

Proof. The proof is based on the following two observa-

tions: (𝑖) cert𝐷
𝑞O ,J ⊆ cert𝐷

′
𝑞O ,J , for any OBDM specification

J = ⟨O,S,M⟩, FOL query 𝑞O , and pair of S-databases 𝐷, 𝐷 ′
such that 𝐷 ⊆ 𝐷 ′. (ii) B®𝑡,𝑟 (𝐷) ⊆ B®𝑡,𝑟+1 (𝐷), for any 𝑟 ≥ 0 and

tuple ®𝑡 of a database 𝐷 . □

Similarly to what described in [3, 13, 14], onemay be interested

in finding a query 𝑞O over O expressed in a certain language

LO that perfectly separates the set of tuples in 𝜆+ from the set

of tuples in 𝜆−, that is, a query 𝑞O ∈ LO such that, for a given a

radius 𝑟 , the following two conditions hold:

(1) for all ®𝑡 ∈ 𝜆+, 𝑞O J -matches B®𝑡,𝑟 (𝐷),
(2) for all ®𝑡 ∈ 𝜆−, 𝑞O does not J -match B®𝑡,𝑟 (𝐷).
However, the following example shows that, even in very

simple cases, such query is not guaranteed to exists.

Example 3.6. Consider the following database 𝐷 :

STUD 𝜆

𝜆+

A10 +1

B80 +1

C12 +1

D50 +1

𝜆− E25 -1

LOC

Sap Rome

TV Rome

Pol Milan

ENR

A10 Math TV

B80 Math Sap

C12 Science Norm

D50 Science TV

E25 Math Pol



The corresponding borders of radius 1, for each tuple are:

BA10,1 (𝐷) = {STUD(A10), ENR(A10, Math, TV), LOC(TV, Rome)}
BB80,1 (𝐷) = {STUD(B80), ENR(B80, Math, Sap), LOC(Sap, Rome)}
BC12,1 (𝐷) = {STUD(C12), ENR(C12, Science, Norm)}
BD50,1 (𝐷) = {STUD(D50), ENR(D50, Science, TV), LOC(TV, Rome)}
BE25,1 (𝐷) = {STUD(E25), ENR(E25, Math, Pol), LOC(Pol, Milan)}

Moreover, let O = {studies ⊑ likes}, andM be:

ENR(x, y, z)⇝ studies(x,y)

ENR(x, y, z)⇝ taughtIn(y,z)

LOC(x, y)⇝ locatedIn(x,y)

Let LO be the class of conjunctive queries (CQ). It is possible

to show that there is no CQ-query over the ontology that per-

fectly separates the set of tuples in 𝜆+ from the set of tuples in

𝜆−. Nonetheless, observe that there are several CQ-queries that
reasonably describe 𝜆. For example:

𝑞1 (𝑥) ← studies(x,y) ∧ taughtIn(y,z) ∧ locatedIn(z, ‘Rome’)

𝑞2 (𝑥) ← studies(x, ‘Math’)

𝑞3 (𝑥) ← likes(x, ‘Science’)

It is easy to verify that:

• 𝑞1 Σ-matches B®𝑡,1 (𝐷), for all ®𝑡 ∈ {A10, B80, D50}
• 𝑞2 Σ-matches B®𝑡,1 (𝐷), for all ®𝑡 ∈ {A10, B80, E25}
• 𝑞3 Σ-matches B®𝑡,1 (𝐷), for all ®𝑡 ∈ {C12, D50}

Looking at the above queries, one could ask which query is the

best. The answer to this question, however, is not trivial, since 𝑞2
Σ-matches

2

4
of B®𝑡,1 (𝐷) for ®𝑡 in 𝜆+, and all B®𝑡,1 (𝐷) for ®𝑡 in 𝜆−,

whilst 𝑞1 Σ-matches
3

4
of B®𝑡,1 (𝐷) for ®𝑡 in 𝜆+, and no B®𝑡,1 (𝐷) for

®𝑡 in 𝜆−. Besides, 𝑞3 Σ-matches
2

4
of B®𝑡,1 (𝐷) for ®𝑡 in 𝜆+, and no

B®𝑡,1 (𝐷) for ®𝑡 in 𝜆−. Finally, 𝑞2 and 𝑞3 have less atoms than 𝑞1.

□

The above example suggests that searching for a query aiming

at semantically describing 𝜆 with the only constraint of satisfying

conditions (1) and (2) may turn out to be unsatisfactory. For this

reason, we propose a different approach by complicating the

framework, so as to be potentially appealing in many different

contexts.

In general, one is interested in a query 𝑞O over O expressed

in a certain language LO that accomplishes in the best way a

set Δ of criteria. We formalize the idea by introducing a set of

functions F , one for each criteria 𝛿 ∈ Δ, and a mathematical

expressionZ having a variable 𝑧𝛿 for each criteria 𝛿 ∈ Δ.
Specifically, for a certain criteria 𝛿 ∈ Δ, the value of the func-

tion 𝑓
J,𝑟
𝛿,𝜆
(𝑞O) represents how much the query 𝑞O meets criteria

𝛿 for 𝜆 w.r.t. the OBDM system Σ = ⟨J , 𝐷⟩ and the considered

radius 𝑟 . Without loss of generality, we can obviously consider

all such functions to have the same range of values as their

codomain. Then, after instantiating each variable 𝑧𝛿 inZ with

the corresponding value 𝑓
J,𝑟
𝛿,𝜆
(𝑞O), the total value of the obtained

expression, denoted byZF (𝑞O), represents theZ-score of the
query 𝑞O under F .

Among the various possible queries in a certain query lan-

guage LO , it is reasonable to look for the ones that give us the

highest possible score. This naturally led to the following main

definition of our framework:

Definition 3.7. A query 𝑞O LO-best describes 𝜆 w.r.t. an OBDM
system Σ = ⟨J , 𝐷⟩, a radius 𝑟 , a set of criteria Δ, a set of functions
F , and an expressionZ, if 𝑞O ∈ LO and there exists no query

𝑞′O ∈ LO such thatZF (𝑞′O) > ZF (𝑞O). □

As for the set of criteria to be considered, here we just list

some interesting ones:

𝛿1 = “Are there many tuples ®𝑡 ∈ 𝜆+ such that 𝑞O J -matches

B®𝑡,𝑟 (𝐷)?”
𝛿2 = “Are there few tuples ®𝑡 ∈ 𝜆+ such that 𝑞O does not J -

match B®𝑡,𝑟 (𝐷)?”
𝛿3 = “Are there many tuples ®𝑡 ∈ 𝜆− such that 𝑞O does not

J -match B®𝑡,𝑟 (𝐷)?”
𝛿4 = “Are there few tuples ®𝑡 ∈ 𝜆− such that 𝑞O J -matches

B®𝑡,𝑟 (𝐷)?”

Furthermore, depending on the query language LO consid-

ered, there may be many other meaningful criteria. For instance,

when LO = 𝐶𝑄 , one may be interested in 𝛿5 = “Are there few

atoms used by the query 𝑞O?”, and when LO = 𝑈𝐶𝑄 one may

be further interested in 𝛿6 = “Are there few disjuncts used by the

query 𝑞O?”.
We conclude this section by applying such newly introduced

framework to Example 3.6.

Example 3.8. We refer to J , 𝑟 , 𝜆, and the queries 𝑞1, 𝑞2, 𝑞3 as

in Example 3.6. Suppose one is interested in the set of criteria

Δ = {𝛿1, 𝛿4, 𝛿5}, with the following associated set of functions

F :

• 𝑓𝛿1 (𝑞O) =
| {®𝑡 ∈ 𝜆+ | 𝑞O Σ-matches B®𝑡,𝑟 (𝐷) } |

|𝜆+ |

• 𝑓𝛿4 (𝑞O) = 1 − | {
®𝑡 ∈ 𝜆− | 𝑞O Σ-matches B®𝑡,𝑟 (𝐷) } |

|𝜆− |
• 𝑓𝛿5 (𝑞O) =

1

|atoms appearing in 𝑞O |

Now, consider the expressionZ =
𝛼𝑧𝛿

1
× 𝛽𝑧𝛿

4
×𝛾𝑧𝛿

5

𝛼 + 𝛽 +𝛾 , i.e. the aver-

age of the evaluations of each function of F , weighted over three
parameters 𝛼 , 𝛽 , and 𝛾 . One can verify that the following queries

best describe 𝜆 w.r.t. J , 𝑟 , Δ, F , andZ, for each instantiation of

Z:

(1) (𝛼 = 𝛽 = 𝛾 = 1) → 𝑞3
(2) (𝛼 = 3, 𝛽 = 1, 𝛾 = 1) → 𝑞1

In fact, let Z1 be the instantiation of the parameters of the ex-

pressionZ corresponding to (1), thenZ1 (𝑞1) = 0.693,Z1 (𝑞2) =
0.333, Z1 (𝑞3) = 0.833. Similarly, let Z2 be the instantiation of

the parameters of the expressionZ corresponding to (2), then

Z2 (𝑞1) = 0.716,Z2 (𝑞2) = 0.5,Z2 (𝑞3) = 0.7. □

4 CONCLUSIONS
We have presented a framework for using the Ontology-Based

Data Management paradigm in order to provide an explanation

of the behavior of a classifier. Our short term goal in this research

is to provide techniques for deriving useful explanations in terms

of queries over the ontology. Interestingly, the work in [8, 9] pro-

vides a ground basis for the reverse engineering process described

in this paper, from the data sources to the ontology. Moreover,

the work in [10] offers an interesting set of techniques for ex-

plaining query answers in the context of an OBDM. Our future

work will also include an evaluation of both the framework and

the techniques presented in this paper to real world settings.
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