A Temporal Logic-Based Measurement Framework
for Process Mining

Alessio Cecconi
WU Vienna
Vienna, Austria
alessio.cecconi@wu.ac.at

Rome, Italy

Abstract—The assessment of behavioral rules with respect to a
given dataset is key in several research areas, including declara-
tive process mining, association rule mining, and specification
mining. The assessment is required to check how well a set
of discovered rules describes the input data, as well as to
determine to what extent data complies with predefined rules.
In declarative process mining, in particular, some measures
have been taken from association rule mining and adapted to
support the assessment of temporal rules on event logs. Among
them, support and confidence are used most often, yet they are
reportedly unable to provide a sufficiently rich feedback to users
and often cause spurious rules to be discovered from logs. In
addition, these measures are designed to work on a predefined
set of rules, thus lacking generality and extensibility. In this
paper, we address this research gap by developing a general
measurement framework for temporal rules based on Linear-
time Temporal Logic with Past on Finite Traces (LTLp;). The
framework is independent from the rule-specification language
of choice and allows users to define new measures. We show
that our framework can seamlessly adapt well-known measures
of the association rule mining field to declarative process mining.
Also, we test our software prototype implementing the framework
on synthetic and real-world data, and investigate the properties
characterizing those measures in the context of process analysis.

Index Terms—Declarative Process Mining, Specification Min-
ing, Association Rule Mining, Quality Measures, Temporal Rules

I. INTRODUCTION

Measuring the degree to which process traces comply with
behavioral rules is key in process analysis branches such as
conformance checking [1], compliance assessment [2], and
discovery of process constraints [3]. To date, several measures
have been defined to this end. Among the most frequently
used measures there are support and confidence. However, their
definition has been customized to the specification languages in
use and even for the specific mining algorithms under analysis.
For instance, there is a significant difference in the definition
of support used in [3] (percentage of traces fully compliant
to a rule) and [4] (percentage of fulfilled triggers of the rule
over the entire log), in a way that the support of rule “If a is
executed, then b will be executed later” on a set of traces like
{(a,b,c,d),(a,b,c,ay,{a,cy} is equal to 0.33 for [3] and 0.5
according to [4]. Furthermore, the definition of those measures
are defined ad hoc for specific sets of rules, like DECLARE [5]
templates. Such issues hinder the fair comparison and eventually
the advancement of rule-based process mining.

Giuseppe De Giacomo, Claudio Di Ciccio Fabrizio Maria Maggi
Sapienza University of Rome

{name.surname } @uniromal.it

Jan Mendling
WU Vienna
Vienna, Austria
jan.mendling@wu.ac.at

Free University of Bolzano
Bolzano, Italy
maggi @inf.unibz.it

A plethora of other measures are available in the context
of association rule mining that are reportedly superior in
comparison to support and confidence [6]. However, these
measures do not take into consideration the temporal dimension,
which is a first-class citizen dimension in process mining.

In this paper, we address this research problem by proposing
a general measurement framework rooted in formal semantics,
specifically in Linear-time Temporal Logic with Past on Finite
Traces (LTLpy), to express process rules in a reactive form
[7]1 and abstract from specific rule-specification languages.
More specifically, we show that a fine grained temporal logic
interpretation of any formula in the form “if A then B” allows
us to assess all the available association rule mining measures
as-is for temporal rules.

Towards investigating the implications of using a large set
of available measures on log analysis, we conduct an extensive
set of simulation experiments. Through them, we observe that
the measures respond differently to changes in the behavior
evidenced by event logs, thus suggesting that different measures
can be used to highlight different aspects of a process as per
its recorded executions. Also, we test our implementation of
the framework on both synthetic and real-world data.

The remainder of this paper is structured as follows. Sec-
tion II discusses prior research on measures for declarative
process mining and specification mining. Section III defines
preliminaries upon which we define our framework. Section IV
defines the measurement framework. Section V presents
computational studies of our implementation and Section VI the
results of its application to a series of simulation experiments.
Finally, Section VII summarizes the contribution of this paper
and points to opportunities for future research.

II. RELATED WORK

Temporal logic and declarative specifications have been widely
used to support process discovery and conformance checking.
The assessment of rules with respect to traces is a key
component of all these techniques.

In declarative process discovery, quality measures are used
to prune candidate rules based on user-defined thresholds. This
pruning is used for DECLARE discovery in [3], [4] and for
DCRgraphs discovery in [8]. These techniques are mainly
based on confidence and support measures. Nevertheless, the
use of support and confidence is not sufficient to avoid a large



number of spurious results, thus threatening their statistical
validity [9]. In addition, the definitions of these metrics are
also different for different techniques. For instance, the support
measure presented in [3] is different from the support of [4].
Also, both are defined for the sole DECLARE template set.

In the area of conformance checking, de Leoni et al. [1] use
alignments and fitness to measure the degree of conformance
of a DECLARE model with respect to an execution trace.
Polyvyanyy et al. [10] rely on entropy to measure precision
and recall of both procedural and declarative models. Finally,
Burattin et al. [11] use specific measures like fulfillment ratio
and violation ratio based on the evaluation of the number of
activations of a rule that lead to a fulfillment and the number of
activations that lead to a violation in a log. Quality measures are
critical for all these techniques. However, the metrics provided
in these works are bound to the specific techniques and the
precise modeling languages used. Also, those techniques do
not provide a general measurement framework that can be
applied for any type of temporal-logic rule.

In software engineering, a number of works employ tech-
niques for the discovery and quality assessment of temporal
patterns. This stream of research is called specification mining.
Yang et al. [12] discover 2-value temporal patterns using
a trace measure that quantifies partial satisfactions of a
rule. Yet, the technique lacks generality as it is limited
only to alternation patterns (similar to ALTERNATERESPONSE
and ALTERNATEPRECEDENCE in Table I) and the adopted
computation heuristics are tailored to the software domain.
Le et al. [6] emphasize the limits of using only support
and confidence measures and investigate properties of other
measures reviewed in [13]. Their results demonstrate that there
are several measures outperforming support and confidence,
and that the combination of different measures yields better
results. However, they limit their study to 2-value temporal
patterns (specifically, RESPONSE and PRECEDENCE in Table I).
Furthermore, their computation of the probability for a temporal
specification is based on a sliding window technique [14]: the
traces are read in chunks of the size of a given window, then the
probability of a rule is the percentage of windows in which it
is valid. They test the effect of different window sizes, showing
that their results depend not only on the input rules and the
data, but also on this parameter selection. Lemieux et al. [15]
extend specification mining to arbitrary Linear Temporal Logic
(LTL) specifications (implicitly on finite traces) beyond 2-value
templates. Yet, they resort only on support and confidence
measures to prune uninteresting results, thus incurring in the
already mentioned statistical limits [9].

In summary, we observe that measures are largely used as a
tool to support research, but they are hardly made subject to
evaluative research themselves. Next, we define preliminaries
for a framework to assess various measures.

III. PRELIMINARIES

As the formal foundations of our framework, we consider rules
specified in Linear Temporal Logic on Finite Traces (LTLy)
[16], as used in DECLARE [5], [17]. LTL; has exactly the

Table I: Some DECLARE constraints expressed as RCons

Constraint LTL; expression [16] RCon

PARTICIPATION(a) da tsun = Qa

INIT (@) a tstart 0> @
END(a) O0a tena O @
ATMOSTONE(a) O(a = O(—90a)) ao> O(—0a)
RESPONDEDEXISTENCE(a, b) OQa — Ob aos (Ob v &b)
RESPONSE(a, b) O(a — Ob) ac—> Ob
ALTERNATERESPONSE(a, b) O(a— Ob)ald(a— O(—a W b)) ac>O(—a U b)
CHAINRESPONSE(a, b) O(a — Ob) A [(a — Ob) aos Ob
PRECEDENCE(a, b) —b W a bo— Qa
ALTERNATEPRECEDENCE(a,b) (—b W a) A[J(b > O(—b W a)) bo>O(—b S a)
CHAINPRECEDENCE(a, b) (—=b W a) A [J(Ob — a) bos Oa

same syntax of LTL [18]. Its semantics is interpreted on finite
traces, and hence takes into account that business processes are
assumed to terminate sooner or later [19]. DECLARE focuses
on some specific LTL; formulas. Table I illustrates some of
the most important rules for business process modeling.

Specifically useful for our purposes is LTLp, which is an
extension of LTL; supporting the expression of properties
of the past (hence the “p” suffix) [7]. Well-formed LTLp,
formulae are built from an alphabet X 2 {a} of propositional
symbols and are closed under the boolean connectives, the
unary temporal operators O (next) and © (previous), the binary
temporal operators U (Until) and S (Since):

p x=al(=p)l(p1 A P2)[(OP)l(p1 U #2)|(©9)l(#1 S 2)-

From these basic operators, it is possible to derive: classical
boolean abbreviations True, False, v/, —; constant tg,q, verified
as — O True, denoting the last instant of a trace; constant g,
verified as — © True, denoting the first instant of a trace; Q¢
as True U ¢ indicating that ¢ holds true eventually before
tend; 1 W @2 as (o1 U ¢2) v [p1, which relaxes U
as o may never hold true; ©p as True S ¢ indicating that
 holds true eventually in the past after tgur; [lp as —=OQ—¢p
indicating that ¢ holds true from the current instant till ¢gq;
He as =9 —p indicating that ¢ holds true from tgg to the
current instant.

Given a finite trace ¢ of length n € N, an LTLp; formula
@ is satisfied in a given instant ¢ (1 < ¢ < n) by induction of
the following:
t,i = True; t,1  False;
t,i = a iff ¢(7) is assigned with a;
t,i = iff t,i ¥ o
ti =1 Ao iff t,i =y and t,i = o
t,iE=Opiff i <nand t,i+ 1} ¢;
tiEOpiff i > 1 and t,i — 1 = ¢;
tikE @ U o ifft,j = ¢ withi < j < n, and ¢,k = ¢
for all k s.t. i < k < j;
tilEe1 S w2 iff t,5 = @2 with 1 < j <4, and ¢,k |= o1
for all k s.t. j < k < d.
A formula ¢ is satisfied by a trace ¢, written ¢ |= @ iff £, 1 = .
One of the central properties of LTLp , shared with LTLy, is
that one can compute a deterministic finite state automaton
(DFS) A, such that for every trace ¢ we have t |= ¢ iff ¢ is
in the language recognized by A..



IV. TEMPORAL-EXTENDED MEASUREMENT FRAMEWORK

In this section, we build on LTLp  to develop our measurement
framework. Above, we discussed that relying only on confi-
dence and support measures can produce spurious results [9]
and that various measures beyond them have been proposed in
association rule mining for time-unaware rules [13]. Table II
presents a comprehensive list of those measures. Some of
them, like confidence and support, are used for the temporal
specification of processes, though interpreted in different, ad-
hoc ways [3], [4], [7]. The framework we propose next is
generic as it allows for the usage of any probabilistic measure
(including those of Table II) on any rule for the temporal
specification of processes. To this end, Section IV-A formalizes
the reactive temporal specification of rules, Section IV-B
discusses their probabilistic interpretation, and Section IV-C
defines the overall framework.

A. Reactive Temporal Specification

Our first building block is the concept of Reactive Constraint
(RCon), originally introduced in [7], which we extend here.
A rule typically expresses that the occurrence of certain
preconditions (activation) implies certain consequences (target).
We codify such intuition in RCons based on LTLp.

Definition 4.1 (Reactive Constraint (RCon)): Given an
alphabet X U {tsir, tEna, True, False}, let ¢, and ¢, be LTLp f
formulae over . A Reactive Constraint (RCon) VU is a pair
(¢a, @r) hereafter denoted as ¥ = ¢, o~ @,

An RCon is interpreted as follows: each time the activator
is true, the target should be true at that point of the trace. For
example, a o— Ob is an RCon describing that every time a
(the activator, ) is True, then also Qb (the target, ¢,) must
evaluate to True. Because at every event of the trace (i.e., any
point in time) both the activator and target can be either True
or False, the possible evaluation of an RCon can result in either
of the following four combinations.

Definition 4.2 (RCon evaluation): Given an RCon ¥ =
Yo o— @, and a trace t of length n € N, let ¢; be the i
event in the trace (1 < ¢ < n). For each t; € t the possible
evaluations of W are:

o = False, o, = False if {t,1 ¥ o A L1 H @}

0o = False, o, = True if {t,i b ©o A t,i = ©r};

0o = True, @, = False if {t,i |= @o A t,0 ¥ ©r};

0o = True, ¢, = True if {t,i = ¢a At,i = pr}.

For example, the first two rows of Table III show the evaluation
of RCon (©b A Qe)o— (—c v Of) in each event of trace
(a,b,c,d,f,c, e, c hy. The constraint states that, between the
execution of tasks b and e, no occurrence of c is expected
unless it is eventually followed by f. Notice that ¢, and ¢,
are evaluated separately at every event of a trace.

The RCon evaluation can be performed efficiently based
on the automaton-based techniques defined in [7], adapting
it for offline verification. The full description of this aspect
goes beyond the scope of the paper, but we briefly outline
the rationale here. Intuitively, we resort on [7, Theorem 4]: an
RCon can be separated in pure-past, pure-present and pure-
future components. The respective sub-formulas contain only

past temporal operators, none, or only future ones. Therefore,
by mirroring pure-past formulas and reversing their automata, a
single replay of the sub-trace from the beginning to the activator
event keeps track of the truth value of the pure-past formula
till that point. As we know the suffix of the trace, we can
apply the same principle to pure-future formulas too: a single
replay from the end of the trace to the activator event keeps
track of the truth value of the pure-future formula from that
point onwards. In this way, we evaluate any formula at each
event reading the trace only twice: once from tgy to tgng (past
components) and once from tgyg to tgyy (future components).
This implies that the computational cost depends linearly on
the number of events in the event log and the number of rules
to verify. Specifically, given an event log L with |L| traces,
assuming every trace ¢t € L having length up to n events, and
M rules, the cost to verify all rules on L is: O(]L| x n x M).

B. Probabilistic interpretation

The evaluation of RCons indicates whether a rule holds true or
false within a trace. In real life, traces often contain noise or
partially deviate from desired process specifications. In such
occasions wherein the trace contains also events that do not
satisfy the rule, we are interested in understanding to what
degree a rule is satisfied. As we have previously defined the
notion of satisfaction for ¢, and ¢, on single events (Def. 4.2),
we can devise a probabilistic interpretation for RCons over
traces.

Definition 4.3 (Probability of an LTLp; formula): Given an
LTLp, formula ¢ and a trace ¢ of length [t| = n, we define
the probability of ¢ over ¢ = {t1,...,t,) as the proportion of
events t; (i € [1,n],n € N) satisfying .

Py = HEE L)t ol

Definition 4.4 (Probability of LTLp; formulae intersection):
Given two LTLp, formulae ¢; and ¢ and a trace ¢ of length
n, we define the probability of the intersection of ¢ and o
over t as the proportion of events ¢; € ¢ satisfying both ¢; and

©2-

P((pl ﬁ@2,t) _ ‘{ZG [l,n] St,i ': (pl’t,l' ': @2}”

The probability of all the RCon evaluations follows from the
above definitions.

ﬁgp mﬁgo t): |{Z€[17n]t7l%@a7taz%§0T}|
’ . ) .

~ Hielln] 4 it wa,tyi E or)l

t) — ‘{Ze[l’n] :t7ir‘:@a7tvi}7é80‘r}|

~Wie[l,n] :tiE vt i = e}
n

o)
S
o

D
AS)
3
Nt

|

For example, Table III shows the probabilities resulting form
the evaluation of RCon (&b A Qe)o— (—c v Of) on trace
(a,b,c,d,f,c,e,c,h). Probabilities defined as above permit the
application, in the context of temporal logic specifications, of
measures defined for association rule mining [13], where an



Table II: Probabilistic measures from [13] on association rules in the form “if A then B”.

Measure Formula Range Measure Formula

Range Measure Formula

P(AB)

P(A)P(=B)

Support P(AB) [0.1] ) —1) x P(AB)™ [0, +o0) Conviction [0, +o0)
Confidence/Precision  P(B|A) [0, 1] Weighting Dependency ~ + (AP (B) ) P(A=B)

) Yole's O P(AB)P(—A—B) — P(A=B)P(~AB) (=90, +20) Piatetsky-Shapiro P(AB) — P(A)P(B) [-1,1]
Coverage P(A) [0,1] PABP(oA=B) & P(ASB)P(oAD) 0, +0 cosine P(AB) 0, o)
Prevalence P(B) [0,1] \/P(AB)P(=A=B) — \/P(A=B)P(—AB) i VP(A)P(B) !

Yule’s Y — (=00, +0) P(A)P(-B)
Recall P(A|B) [0,1] VP(AB)P(—A—DB) + \/P(A—B)P(—AB) Loevinger 1— (—.1)
Specificity P(=B|-A) [0,1] Klosgen V/P(AB) x max(P(B|A) — P(B), P(A|B) — P(A)) [-1.1] II;&E)B)
Accuracy P(AB) + P(~A-B) [0,1] Gini Index P(A) x (P(B|A)? + P(=B|A)?) + [-2,2] Information Gain log P)P(B) (—0, +0)
. P(AB) _ P(—A) x (P(B|=A)? + P(=B|-A)?%) ebag-Schoenauer P(AB)

Lift/Interest PAP(B) [0, +0) _P(B)’ - P(=B)? Sebag-Sch PA=B) [0, +00)
Leverage P(B|A) — P(A)P(B) (—1.1] Colletive Stength PAB) ¥ POBI~A) 1= PAP(B) = POAPCE) 0 Lagc PLAB) - P(A-5) (~o0, +0)
Added Value/ P(B|A) — P(B) [-1,1] 52’3)5)(5%* P(=A)P(=B) 1— P(AB) — P(=B|—A) » p(AB)I;((E)B)
Change of Support Laplace Correction S [0.5,1] 0dd Multiplier FBPA=B) [0, +o0)
Relative risk P(B|A) [0, +o0) N+ ZP(B‘A) P(—B|A) P(A-B)

P(B|-A) ’ J-Measure P(AB)log + P(A-B)log ! (o0, +o0)  Example and 1- (~o0,1]
Jaceard P(AB) (—eor 400) P PCB) Counterexample Rate P(AB)

P(A) + P(B) — P(AB) 7 Two-Way Support P(AB)logy —AB)_, p(a-B)log, LAD) (=00, +®)  Odds ratio P(AB)P(-A—B) [0, +o0)

Lo P(B|A) — P(B) i P(A)P(B) P(A)P(—B) P(A-B)P(—BA) i
Certainty factor —-rm) (=0, +0) Variation P(=AB) P(~A—B) P(AB)

@-Coefficient P(AB) — P(A)P(B) (=0, +) + P(~AB)log; 5r——nmrey ﬁA%P(B + P(-A=B)log, 5o 55 One-Way Support P(BIA) log, 5y (o0 +o0)
o - TPAPBPAPCE 2 P(AB) — P(A)P(B . Wo-Way Suppe o P(AB) _
(cLolzfegc‘.g\?;mlmn e Fhane wmax(P(AB)P(~B), P(B)P(A—B)) (=o0 +o0)  TwoWay Support - P(AB)loz 5o iprgy (200 +90)
Table III: Evaluation (0 is False and 1 is True), probabilistic oot "
. . . . . vent log leasures
interpretation, and statistics computation of a sample of

measures for RCon (&b A Qe) o— (—c v Of).

Probabilistic
interpretation

Logical
evaluation

Reactive
constraint

Tracety = ( a b, ¢ d f ¢ e ¢ h )
@a: (Ob A Oe) 0 1 1 1 1 1 1 0 0
0zt (—c v Of) 1 1 1 1 1 0 1 0 1
P(pa) =9 P(—papr) =2 P(—pa—pr) =19

P(pa—pr) =19 P(papr) =5/0
Confidence: P(¢r|pa) = 0.83
Lift P(¢apr)/(P(9a) P(or)) = 1.07

P(e) =7
Support: P(pap-) = 0.56

Specificity: P(—¢,|—¢a) = 0.33

Event log Support Confidence Specificity  Lift

t1 = <{a,b,c,d,f,c,e,c,hy 0.56 0.83 0.33 1.07
to = <{b,d,a,f,g,d,ed) 0.88 1.00 0.00 1.00
ts = <a,c,d,b,c,e,f,c) 0.38 1.00 0.20 1.14
ta = <{b,c,c,e,ay 0.4 0.50 0.00 0.83
Mean 0.55 0.83 0.13 1.01

Standard deviation 0.23 0.24 0.16 0.13

Variance 0.05 0.06 0.03 0.02

antecedent A and a consequent B are defined for every rule
in the form “if A then B”. To that extent, it suffices to map
©¥q to A and @, to B, thus having P(A) as P(y.), P(B) as
P(p;), and P(AB) as P(p, N ;). As a result, we can extend
any measure defined for association rules to temporal rules
as well, including those of Table II. For example, Table III
shows few measures computed from the probabilities of RCon

(Ob A Qe) o— (—c v Of).

C. Measurement system

Given as input an event log L, a set of Reactive Constraints
(RCons) R, and a set of probabilistic measures M, our
framework returns the measurement of every measure in M
for each constraint in R over log L. More precisely, the output
can be reported at three different levels of detail:

Event level: distinct evaluation of ¢, and ¢, for every
constraint in R on each event of each trace in L;

Trace level: measurement of every measure in M for every
trace in L for every constraint in R;

ty: A <10001>
T <10101>
tp: A <00001111>
T <11111011>

Mean Std.Dev ..
Sup 0.50 .20
Conf 0.85 0.10
thi A <0010111> . - .
T <0001011>

Event level Trace level Event log level

Figure 1: Measurement framework pipeline.

Log level: statistical distribution of every measure in M for
every constraint in R.

For example, Table III shows the aggregation of trace-level
measures for RCon (&b A Qe) o— (—c v Of) in a log that
consists of 4 traces. Being able to perceive the overall status
of a constraint is as important as the possibility to analyze its
details in single traces. Therefore, we report the entire statistical
distribution of a measure across the log to provide a complete
information spectrum. Figure 1 depicts the pipeline of the
framework from the input to the output. In the first stage, an
RCon is evaluated in each trace of the log. Then, the evaluation
result is used to compute probabilities and measures of the
rule in each trace. In the final stage, the statistical distribution
of each measure over the log is drawn.

The design of the RCons, in particular the choice of
the activators, is crucial for the evaluation and the com-
putation of the measures. Let us take as an example the
constraint RESPONDEDEXISTENCE(a, b) from the repertoire of
DECLARE (see Table I). The classical LTL ; formula underlying
RESPONDEDEXISTENCE(a, b) for whole-trace evaluations is
—=0a v Ob [16]. However, the formulation of the rule as an
RCon can lead to different interpretations:

e ao— (Ob v Ob), i.e.,, when a occurs, b is expected to occur
somewhere in the trace;
e (Oav %a) o~ (Ob v &b), i.e., for every event of the trace



Table IV: Measurements of a constraint expressed with different
formulations on trace {(d, a, b, c, a).

RCon formulation Evaluation %1(17::27) g‘z’gjﬁ;‘:")
acs (Ob v ob) P DIV OR =04 =1
(0a v 6a) = (Ob v ob) o 8 }i v B ss=1  55=1
True oo —(0a v 6a) v (Ob v Ob) Z’;jj 8 }H B o1 o1
fon 2 (200 00 SIGToy =02 et

such that a occurs either in the past or in the future, also
b should occur somewhere in the trace;
e Trueo—~ —(Qa v Sa) v (Ob v &b), i.e., at every event, if a
occurs in the trace, also b is expected to occur;
o tsun o= (—Qa v Ob), i.e., at the beginning of the trace, if a
occurs in the trace also b should occur.
All the formulations above are legitimate as they entail that
the occurrence of a in the trace demands the occurrence of b.
However, the difference in the way the activator is represented
turns out to be crucial. The activator, indeed, encodes when
the rule is of interest. For example: are we interested in each
single occurrence of task a or only in its eventual occurrence
in the trace? Do we want the rule to be satisfied in every
point of the trace or just at the beginning of the trace? This
choice has a clear impact on the measures. Table IV presents
the evaluation of a trace with the different formulations seen
above and their measurements for the confidence and support
measures. While they are all perfectly compliant to the trace
(confidence is equal to 1, i.e., each time the activator holds
true, also the target holds true), the support varies considerably,
i.e., the frequency of ¢, N ¢,. Notice that this phenomenon
comes with neither a good nor with a bad connotation, but
stresses the idea that a full control over the formula implies a
mindful decision about its design and subsequently on picking
the right measures for it.

In summary, we have defined a measurement framework
for declarative specifications defined as Reactive Constraints,
capable of reporting customizable measures at both trace and
event log levels.

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS

We have implemented our measurement framework as a proof-
of-concept software prototype on top of an existing declarative
process specification discovery tool [7]. The Java source-code
can be found at github.com/Oneiroe/Janus. The core software
architecture for the verification of RCons is shared with the
discovery tool. That is why the new and the old software
components are contained in the same repository despite the
independence of the two modules (discovery and measurement).
All the models used in the following experiments are discovered
with [7].

In the remainder of this section, we report on the results of an
experimental investigation on the computational performance
of our implemented framework. In particular, we assess the
performance of the implemented technique against an increase

Table V: The set of DECLARE rules used in the experiments.

INIT(a) RESPONSE(e, f) CHAINRESPONSE (o, p)
END(b) PRECEDENCE(g, h) CHAINPRECEDENCE(q, r)
ATMOSTONE(c) ALTERNATEPRECEDENCE(i,|) ~ RESPONDEDEXISTENCE(s, t)

PARTICIPATION(d) ~ ALTERNATERESPONSE(m, n)

in the data size (i.e., the size of the event log) and the model
size (i.e., the number of rules) with synthetic event logs. Finally,
we test the performance on a set of real life logs.

We repeated every experiment 10 times to smooth random
factors. The reported results average over the ones of the single
repetitions. The machine used for the experiments was equipped
with an Intel Core 15-7300U CPU at 2.60GHz, quad-core, 16Gb
of RAM and an Ubuntu 18.04.4 LTS operating system.

To test the response of our implemented framework against
the input data size, we set up a controlled experiment in which
we first generated logs of varying sizes that are compliant
with a fixed set of rules, resorting on the simulation engine of
MINERful [20]. Thereupon, we computed the measures listed
in Table II against all the rules of a larger test model (not fully
compliant with the event log). For every run, we recorded the
wall-clock time of our prototype.

The starting set of rules stems from the DECLARE repertoire
of templates [5] and is provided in Table V. Notice that the
set contains all the rule templates seen in Table I and is
designed in a way that every constraint insists on different tasks.
The test model consists of 649 constraints extracted by the
discovery algorithm of Janus (setting the support and confidence
threshold parameters to 0.05 and 0.8) from a synthetic event
log of 834963 events, 500 traces and tasks in [a,z] that is
compliant with the initial model. Given the test model obtained
as described above, we performed two tests of 65 iterations
each, based on synthetic event logs that comply with the rules
of Table V, by: (1) increasing the length of the traces (with
a step of 100 events per iteration, keeping the number of
traces per event log equal to 500); (2) increasing the number
of traces in the event log (with a step of 50 new traces per
iteration, keeping the trace lengths between 900 and 1000
events). Figure 2 illustrates the results of both experiments. We
observe that the factor actually influencing the wall-clock time
is the total amount of events rather than the trace length: indeed,
Fig. 2 shows that the recorded timings of both experiments
tend to lie on the same line. This experimental result confirms
the linear relation between the total number of events in the log
and the computational performance illustrated in Section IV-A.

Next, we investigate the response of the framework to an
increase in the model size. To do so, we first generated an
event log containing 1000 traces with a trace length between
100 and 500 events from the simulation of the rules in Table V.
Thereupon, we used the discovery algorithm of Janus to
automatically retrieve different test models with varying levels
of compliance. To that extent, we made the confidence threshold
range from 1.0 (full model compliance), down to 0.0 with a step

! Available at github.com/Oneiroe/Janus/blob/master/tests-SJ2T/model.zip


https://github.com/Oneiroe/Janus
github.com/Oneiroe/Janus/blob/master/tests-SJ2T/model.zip

600

500 =~ trace-number
=& trace-length

400

W
o
o

Time (sec.)

N
o
o

100

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

Events in Log

Figure 2: The computation time is linearly dependent on the
total number of events in the event log.

250
200

150

Time (sec.)

100

0 500 1000 1500 2000 2500 3000 3500

Number of rules

Figure 3: The computation time is linearly dependent on the
total number of rules to check.

of 0.05. The rationale is, the lower the confidence threshold,
the higher the number of constraints in the test model. Then,
we calculated all the measures in Table II for every constraint
of each test model. The time taken for the measurements are
shown in Fig. 3. Notice that the computation time is linearly
dependent on the number of rules to check, thus in line with
the theoretical computational cost exposed in Section IV-A.
To test the performance also in real settings, we calculated
the measurements on 11 openly available BPICs event logs®
plus one event log stemming from a partner of a smart-city
project in which the authors are involved (labelled as “Smart
city” in Table VI). We included the latter event log due to its
considerable size: as it can be noticed from the table, it is the
one bearing the largest amount of events in this experiment.
For each log, we ran the discovery algorithm of Janus in

order to extract a test model to check the event log against.

We tuned the parameters of the discovery algorithm to obtain a
set of rules that are highly compliant (confidence threshold of
0.8), even if not frequent (support threshold of 0.05). Table VI
illustrates the results. For each log we report, along with the
number of traces, tasks and events contained in the log and
the number of rules in the test model, the total time from
the launch to the termination of the software (“Total”), the
time to evaluate the rules on every event (“Checks”), and the

Zhttps://data.4tu.nl/

Table VI: Performance records on real-life datasets.

Event log Traces Tasks Events Rules | Total [sec] Check [msec] Measures [msec]
BPICI12 13087 36 262200 519 94.7 20589.40 70414.90
BPICI13_cp 1487 7 6660 20 1.3 129.3 274.9
BPICI13_i 7554 13 65533 14 2.6 389.5 666.5
BPIC14_f 41353 9 369485 51 20.6 3871.70 13477.10
BPICI5_1f 902 70 21656 3856 37.9 13197.70 22796.00
BPIC15_2f 681 82 24678 5889 56 19199.60 35130.60
BPIC15_3f 1369 62 43786 4098 72.3 24449.00 45503.70
BPIC15_4f 860 65 29403 4690 55 18 605.10 34459.80
BPIC15_5f 975 74 30030 5164 62.9 21975.00 39039.20
RTFMP 150370 11 561470 49 62 12666.30 43145.40
SEPSIS 1050 16 15214 260 3.1 710.70 1590.70
Smart city 4347 20 692333 292 67 22226.60 39295.50

time to compute the measures aggregated by trace and log
(“Measures”). We remark that the wall-clock time remains
within acceptable ranges as the slowest run takes around 1.5
minutes to check about 500 constraints.

VI. EVALUATION

In this section, we report on experiments that show interesting
implications of having a vast availability of measures with
customization options. We argue that having different measures
yields a more precise characterization of the behavior at hand.
Indeed, different measures respond differently to different
stimuli in the data. To support this claim, we study the variation
in the measures at the injection of specific noise types in the
event log that directly or indirectly affect a constraint, thereby
assessing their sensitivity or resilience to changes. In fact, while
an observable reaction of measures could be desirable when,
e.g., noise reveals a change in the process execution, resilience
could be preferable, for example, when noise stems from a mere
interference or technical issue affecting the information system
that records the log. Ultimately, we observe how different
measures sense different aspects of a constraint, thus confirming
the need of using a multitude of measures and the importance
of a proper selection thereof to conduct an in-depth behavioral
analysis.

We conducted the experiment as follows. We took as
reference model the set of rules in Table V and the synthetic
event log that complies with it.! Notice that the rules are
designed not to interfere with one another as each of them
insists on different tasks. In this way, it is possible to observe
the response of measures at varying noise levels targeting
one constraint at a time, thus diminishing the effect of cross-
interference. Thereupon, we injected noise in the event log,
resorting on the technique described in [21], and calculated all
the measures in Table II for the reference model. In particular,
we made use of the following types of noise:

Events insertion: spurious events are included in the traces
(mimicking, e.g., double records, alien events, etc.);
Events deletion: events are expunged from the log (mimick-

ing, e.g., missing records, uncommitted transactions, etc.);
White noise: events are randomly inserted and deleted.
Addressing one rule at a time, we studied (1) the direct effect
of noise on that constraint by altering the occurrences of its


https://data.4tu.nl/

activator and target via insertions and deletions, and (2) the
indirect effect, by altering the occurrences of the other tasks in
the log with white noise. We made the noise spread all over the
log according to a controlled probability variable. For instance,
setting the noise injection as the deletion of occurrences of
task a with a probability of 20% results in the removal of 20%
of the occurrences of task a from the log, picked at random.

More specifically, for every rule in the set of Table V, we ran
a separate experiment for (i) event insertion noise affecting the
activator or (ii) the target, (iii) event deletion noise affecting
the activator or (iv) the target, (v) white noise affecting neither
the activator nor the target. For each of the combinations above,
we let the error-injection probability range from 0 to 100 %
with a step of 10 %. Because of the random factor, we repeated
each experiment 10 times and recorded the average results.

Figure 4 shows the results of such experiments on constraint
RESPONSE(e, f). Every line corresponds to a measure. The
RESPONSE constraint imposes that the target occurs eventually
after each occurrence of the activator. The plots reveal through
the starting point and the steepness of the slopes in the curves
whether, and to what extent, the corresponding measures
consider the frequency of the events satisfying the activator or
the target in the traces. As it can be seen, the measures shows
different trends for each stimulus.

At large, the RESPONSE constraint appears to be particularly
sensitive to the deletions of the target and influenced by both
the deletions and insertions of the activator, while mostly

insensitive to spurious insertions of the target and white noise.

More specifically, we can derive the following observations.

« The deletion of events satisfying the target leads to more
violations of the rule (higher P(p,—-)), thus the negative
effect is reflected in the drop of many measures based on
P(papr) (e.g., confidence, lift, certainty factor). In contrast,
the curves of specificity and accuracy grow because of their
definition bound to P(—p,—@;).

« The deletion of events satisfying the activator, instead,
does not bring more rule violations, but only less satisfactions
(lower P(pa¢+)). Therefore, measures such as relative risk,
lift, Zhang, or leverage, decrease. Measures focusing on the
target (e.g., prevalence) are basically unaffected.

« The insertion of more events satisfying the target (higher
P(p;)) does not influence the frequency with which the
activator is satisfied. Most of the measures are stable, with a
slightly decreasing trend for, e.g., lift or accuracy.

o The insertion of more events satisfying the activator is
less characterizing, as the new elements may bring both new
rule satisfactions (higher P(p,p,)) and violations (higher
P(pa—p;)). That is why many measures show an increasing
trend (e.g., cosine or Laplace), while others oscillate around the
initial value (e.g., confidence). Even the most visible downward
trends (see certainty factor, Zhang and Ylue’s Y and Q) do
not show a totally smooth trend.

o Lastly, the constraint is mostly stable against random
alterations that affect neither the activator nor the target.
The satisfactions and violations remain constant, whilst the
only increase is in P(—¢qp,) and P(—¢,—@,). The slight

fluctuations of the measures are due to the variation in the
number of events in the traces.

Because of space limits, we cannot illustrate the results for
the other rules of Table V. The interested reader can find them
at github.com/Oneiroe/Janus/blob/master/tests-SJ2T/NOISE-
INJECTION-PLOTS.zip. Overall, generalizing from this spe-
cific case, we observe the following: (1) The reaction of
the measures to noise depends on the type of stimulus and
on whether it affects the target or the activator of the rule.
(2) Not all measures sense certain alterations. If a measure
is mostly stable with and without an error, it means that it
cannot sense that particular stimulus. (3) Some measures have
similar trends, but different magnitude. This means that there
are “classes” of measures that focus on the same aspects of a
rule. (4) The steepness of the curves with which the measure
evolves indicates how much the measure is resilient to the
change in presence of noise. In particular, it shows the range
of tolerance before the error becomes too large to recognize
the specific constraint behavior. Notice that sometimes it is
desirable to sense if the fundamental characteristics of a log are
still visible despite the deviations (e.g., to implement discovery
algorithms that are robust to noise).

VII. CONCLUSION

In this paper, we presented a comprehensive measurement
framework for declarative specifications modeled as Reactive
Constraints. Given an event log and a set of custom probabilistic
measures, the framework accepts in input any RCon and returns
as output the evaluation of the rule for each event of the log,
the computed measures for all the traces, and their statistics
over the entire event log. The framework goes beyond the
current state of the art as it is not limited to a specific set
of measures or rules. The experiments conducted reveal the
possibility to characterize the behavior of a given constraint
through the combination of different measures, which sense
differently the behavior recorded in the log.

Future work. Different possibilities are now open upon the
foundations of the measurement framework. It is possible
to exploit the possibility to characterize a phenomenon by
studying the evolution of different measures for, e.g., dynamic
recognition of exceptions in process monitoring [22] or the
identification of process drifts [23].

As different measures react differently to different stimuli
for different types of rules, a method to select and combine the
most appropriate measures depending on the context turns out
to be key. To this extent, future research could resort to existing
techniques like [24] or develop novel multi-measure heuristics.
Also, the measures can be integrated for the assessment of
multi-constraint specifications as a whole as in [1], [11].

Many specifications can be considered equivalently valid for
static measurements, yet their evolution can show which of
them is the most error-tolerant. In this sense, the framework
can support the identification of resilient specifications.

While the analysis of multiple measures at once may be
overwhelming for a human, machine learning techniques,
dealing naturally with multidimensional data, could benefit


https://github.com/Oneiroe/Janus/blob/master/tests-SJ2T/NOISE-INJECTION-PLOTS.zip
https://github.com/Oneiroe/Janus/blob/master/tests-SJ2T/NOISE-INJECTION-PLOTS.zip

Response(e,f) alteration: del:f

Response(e,f) alteration: del:e

Response(e,f) alteration: white:ef

1.0 10 1.0
Specificity B — S— —
0.8 0.8 0 —m ™ ————
Zhang
06 0.6 06
3 g E]
E s kS
04 0.4 0.4
0.2 0.2 0.2
_ O
0.0 0.0 \ 0.0
0 20 80 100 0 20 40 80 100
Eror% . . Error%
Response(e,f) alteration: ins:e
1.0 1.0 m— Support Prevalence
=== Confidence === Added Value
- . O — Recall Jaccard
0.8 08] —— = Lovinger Ylue Q
’ " | Laplace o —— Specificity Yiue Y
. Accuracy Klosgen
Leverage Conviction
06 0.6 e COMpliance = Laplace Correction
E: 3 0dds Ratio — | Measure
s s — Gini Index —— Zhang
0.4 0.4 Coverage m— One-way Support
= Two-way Support Variation = Two-way Support
_Cosine ———— = Linear Correlation Coefficient 'S"fz"“ast":"‘ Gain
02 02{ —/—m— = Least Contradiction ebag-Schoenauer
w —— 0dd Multiplier = Piatetsky-Shapiro
— — — | | R — Example and Counterexample Rate Cosine
0.0 0.0 Interestingness Weighting Dependency C.ertamty factor
' . . . . - . . . . Collective Strength — Lt
0 20 40 80 100 0 20 40 80 100 = Relative risk

Error%

Error%

Figure 4: Effect of error injection on constraint RESPONSE(e, f) for all measures.

from the availability of the great amount of information returned
by the proposed framework. Therefore, it seems to be also
promisingly exploitable for feature selection tasks in sequence
classification [25].

ACKNOWLEDGMENT

The work of C. Di Ciccio was partly supported by MIUR
under grant “Dipartimenti di eccellenza 2018-2022” of the
Department of Computer Science at Sapienza University of
Rome.

[1]

[2]

[3]

[4]

[51
[6]

[7]

[8

=

[9]

REFERENCES

M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “An alignment-
based framework to check the conformance of declarative process models
and to preprocess event-log data,” Inf. Syst., vol. 47, pp. 258-277, 2015.
L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M. P. van der
Aalst, “Compliance monitoring in business processes: Functionalities,
application, and tool-support,” Inf. Syst., vol. 54, pp. 209-234, 2015.

F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient
discovery of understandable declarative process models from event logs,”
in CAiSE, 2012, pp. 270-285.

C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Management Inf. Syst., vol. 5,
no. 4, pp. 24:1-24:37, 2015.

W. M. P. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM, 2006, pp. 1-23.

T. B. Le and D. Lo, “Beyond support and confidence: Exploring
interestingness measures for rule-based specification mining,” in SANER,
2015, pp. 331-340.

A. Cecconi, C. Di Ciccio, G. De Giacomo, and J. Mendling, “Inter-
estingness of traces in declarative process mining: The Janus LTLp_f
approach,” in BPM, 2018, pp. 121-138.

S. Debois, T. T. Hildebrandt, P. H. Laursen, and K. R. Ulrik, “Declarative
process mining for DCR graphs,” in SAC, 2017, pp. 759-764.

W. Hiaméldinen and G. I. Webb, “A tutorial on statistically sound pattern
discovery,” Data Min. Knowl. Discov., vol. 33, no. 2, pp. 325-377, 2019.

(10]

(1]

[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling,
“Monotone precision and recall measures for comparing executions and
specifications of dynamic systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 3, Jun. 2020.

A. Burattin, F. M. Maggi, W. M. P. van der Aalst, and A. Sperduti,
“Techniques for a posteriori analysis of declarative processes,” in EDOC,
2012, pp. 41-50.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: mining
temporal API rules from imperfect traces,” in ICSE, 2006, pp. 282-291.
L. Geng and H. J. Hamilton, “Interestingness measures for data mining:
A survey,” ACM Comput. Surv., vol. 38, no. 3, p. 9, 2006.

M. Gabel and Z. Su, “Online inference and enforcement of temporal
properties,” in ICSE, 2010, pp. 15-24.

C. Lemieux, D. Park, and I. Beschastnikh, “General LTL specification
mining (T),” in ASE, 2015, pp. 81-92.

G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI, 2013, pp. 854-860.

M. Pesic, D. Bosnacki, and W. M. P. van der Aalst, “Enacting declarative
languages using LTL: avoiding errors and improving performance,” in
SPIN, ser. LNCS, vol. 6349. Springer, 2010, pp. 146-161.

C. Baier, J.-P. Katoen, and K. Guldstrand Larsen, Principles of Model
Checking. The MIT Press, 2008.

M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals
of Business Process Management, Second Edition. Springer, 2018.

C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of declare models,” in EOMAS, 2015,
pp. 20-36.

C. Di Ciccio, M. Mecella, and J. Mendling, “The effect of noise on
mined declarative constraints,” in SIMPDA, 2013, pp. 1-24.

F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst,
“Monitoring business constraints with linear temporal logic: An approach
based on colored automata,” in BPM, 2011, pp. 132-147.

A. Yeshchenko, C. D. Ciccio, J. Mendling, and A. Polyvyanyy, “Com-
prehensive process drift detection with visual analytics,” in ER, 2019,
pp. 119-135.

Z. Cao, Y. Tian, T. B. Le, and D. Lo, “Rule-based specification mining
leveraging learning to rank,” Autom. Softw. Eng., vol. 25, no. 3, pp.
501-530, 2018.

Z. Xing, J. Pei, and E. J. Keogh, “A brief survey on sequence
classification,” SIGKDD Explorations, vol. 12, no. 1, pp. 40-48, 2010.



	Introduction
	Related Work
	Preliminaries
	Temporal-extended Measurement Framework
	Reactive Temporal Specification
	Probabilistic interpretation
	Measurement system

	Implementation and performance analysis
	Evaluation
	Conclusion
	References

