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Abstract
We consider an agent that operates with two models
of the environment: one that captures expected be-
haviors and one that captures additional exceptional
behaviors. We study the problem of synthesizing
agent strategies that enforce a goal against environ-
ments operating as expected while also making a
best effort against exceptional environment behav-
iors. We formalize these concepts in the context
of linear-temporal logic, and give an algorithm for
solving this problem. We also show that there is
no trade-off between enforcing the goal under the
expected environment specification and making a
best-effort for it under the exceptional one.

1 Introduction
Synthesis, originally developed in the context of reactive sys-
tems, is concerned with the automatic generation of behav-
iors, or strategies, from requirements. In its usual form, the
requirements are given as temporal specifications, and the re-
sulting behaviors are returned in the form of automata [Pnueli
and Rosner, 1989; Finkbeiner, 2016]. Applying and devel-
oping concepts related to synthesis in an AI context poses
considerable challenges compared with the traditional setting,
including the presence of multiple agents, noise, normative
requirements, and fairness constraints [Daniele et al., 1999;
De Giacomo et al., 2013; D’Ippolito et al., 2018; Belardinelli
et al., 2017; Bonet et al., 2017; Maubert and Murano, 2018;
Belle, 2018; Aminof et al., 2020].

A crucial aspect that all the work on synthesis in AI has in
common is the need for a model of the environment in which
the agent acts. In planning, for example, such a model is
given in terms of a “domain” which specifies, in each state,
how the environment enacts the (possibly nondeterministic)
effects of the action performed by agent [Geffner and Bonet,
2013; Reiter, 2001]. This should be contrasted with tradi-
tional synthesis where one does not make an actual distinc-
tion between the agent specification, i.e., the goal, and the
environment specification [Pnueli and Rosner, 1989]. Syn-
thesizing with a model of the environment is related to syn-
thesis under assumptions as studied in the Verification liter-

ature [Chatterjee and Henzinger, 2007; Bloem et al., 2015;
Brenguier et al., 2017] and, building on that literature, it
has been satisfactorily addressed in [Camacho et al., 2018;
Aminof et al., 2018] and especially in [Aminof et al., 2019a].

Following [Aminof et al., 2019a], the environment is spec-
ified in terms of possible strategies that it could enact, and
is formalized through a linear temporal logic specification
E . In this way we are able to extend planning domains in
many ways, e.g., by allowing for the possibility of having
deferred effects, or introducing fairness or stability condi-
tions on effects. The agent goal is also expressed as a linear
temporal logic specification ϕ, much as is done in planning
for temporally extended goals [Bacchus and Kabanza, 1996;
Bacchus and Kabanza, 2000; De Giacomo and Vardi, 1999;
De Giacomo and Rubin, 2018; Camacho et al., 2018]. Then,
synthesis under environment specifications is the problem of
finding a winning strategy for the agent, which enforces the
goal ϕ no matter what strategy, among those specified by E ,
the environment happens to follow.

While this strategy-based approach to modeling environ-
ments is well suited for capturing synthesis in AI, it suffers
from one severe limitation: the environment model is as-
sumed to be given in a “monolithic way”, i.e., with a sin-
gle specification, and without distinguishing expected behav-
iors (i.e., strategies) and exceptional or uncommon variations,
such as rare faults or failures. As a consequence, the agent is
meant to synthesise a winning strategy against all possible en-
vironment behaviors, independently of them being expected
or exceptional. In real situations however, coming up with a
suitable monolithic model of the environment may be unfea-
sible. If the model only captures the expected behaviors of
the environment, then a winning strategy for the agent may
be ineffective, since it may be losing against exceptional be-
haviors not captured by the model. On the other hand, if the
model also includes possible exceptions, such as faults, fail-
ures, or non-compliance with the expected behaviors, there
may simply not exist a winning strategy for the agent since
handling all possible exceptions may be impossible.

In this paper we abandon a single monolithic model of the
environment in favor of two distinct models, i.e., two environ-
ment specifications: one capturing the expected behaviors,
and one that also includes the exceptional behaviors. Using



these two models we formally show how to appropriately and
simultaneously handle expected and exceptional behaviors.

The central tenet of our contribution is that, in such sit-
uations, an agent should use a winning strategy against the
expected environment behaviors, that, in addition, also pro-
vides a satisfactory response, as far as possible, to the ex-
ceptional behaviors of the environment. Such a “best-effort”
strategy may not be sufficient to realize the agent specification
against all possible exceptions, but it does constitute rational
agent behavior: on the one hand, it is guaranteed to be win-
ning against the expected behaviors; and on the other hand, it
also does not miss any opportunity to be winning against ex-
ceptional environment behaviors. We make these intuitions
precise by formulating “as far as possible” as requiring the
agent strategy to be also winning against a maximal set of
exceptional environment behaviors, where “maximal” is in-
duced by the game-theoretic notion of (weak)-dominance or-
der on agent strategies. Notably, we show that if there is a
winning strategy against the expected-environment specifica-
tion then there is one that, in addition, is making a best effort
against the exceptional-environment specification. Moreover,
we show that one can compute such a strategy.

2 Preliminaries
We fix the notation for concepts that will be used in the rest of
the paper. We follow the notation in [Aminof et al., 2019a].
Linear-time Temporal Logic (LTL). Given a finite setAP
of atomic propositions, formulas of LTL over AP are defined
by the following BNF (where p ∈ AP ): ϕ ::= p | ϕ ∨ ϕ |
¬ϕ |Xϕ |ϕUϕ. The size |ϕ| of a formula ϕ is the number of
symbols in it. A trace τ is an infinite sequence of valuations
of the atoms, i.e., τ ∈ (2AP )ω . For a non-negative integer
n, write τn for the valuation at position n (we index starting
with n = 0). A history h is a finite prefix of a trace; its length
is denoted by |h|. Given a trace τ , an integer n, and an LTL
formula ϕ, the satisfaction relation (τ, n) |= ϕ, stating that
ϕ holds at step n of the sequence τ , is defined as follows:
(τ, n) |= p iff p ∈ τn; (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or
(τ, n) |= ϕ2; (τ, n) |= ¬ϕ iff it is not the case that (τ, n) |=
ϕ; (τ, n) |= Xψ iff (τ, n+ 1) |= ψ; and (τ, n) |= ϕ1 Uϕ2 iff
there exists m ≥ n such that: (τ,m) |= ϕ2 and (τ, j) |= ϕ1

for all n ≤ j < m. We write τ |= ϕ if (τ, 0) |= ϕ to
represent that τ satisfies ϕ and that τ is a model of ϕ. We use
the usual abbreviations, ϕ ⊃ ϕ′

.
= ¬ϕ ∨ ϕ′, true .

= p ∨ ¬p,
false

.
= ¬true, Fϕ .

= trueUϕ, Gϕ .
= ¬F¬ϕ. We write

|= ψ when ψ is logically valid, i.e., τ |= ψ for all traces τ .
Reactive synthesis. (Reactive) synthesis concerns con-
structing the behaviours of an agent that achieves a given
goal while interacting with its environment. We specify goals
as well as environment specifications by LTL formulas. For-
mally, let X and Y be disjoint finite sets of Boolean vari-
ables, called the environment variables and agent variables
respectively, and let AP .

= X ∪ Y . A trace is then writ-
ten (X0 ∪ Y0)(X1 ∪ Y1) . . . where Xi ⊆ X,Yi ⊆ Y for
all i. An agent strategy is a function σag : (2X)+ → 2Y

that maps a non-empty sequence of valuations of the envi-
ronment variables to the next valuation of the agent vari-
ables. Similarly, an environment strategy is a function σenv :

(2Y )∗ → 2X . Note that an environment strategy can accept
the empty sequence λ since the environment makes the first
move. We denote by Σall

ag (resp. Σall
env) the set of all agent

(resp. environment) strategies. A trace (Xi ∪ Yi)i is σag-
consistent if σag(X0X1 · · ·Xj) = Yj for every j ≥ 0; and
is σenv-consistent if σenv(λ) = X0 and σenv(Y0Y1 · · ·Yj) =
Xj+1 for every j ≥ 0. Let PLAY(σag, σenv) denote the
unique trace consistent with both strategies. Let ϕ be an
LTL formula over X ∪ Y . An agent strategy σag enforces
ϕ, written σag B ϕ, if for every environment strategy
σenv, the sequence PLAY(σag, σenv) satisfies ϕ, i.e., ∀σenv ∈
Σall

env. PLAY(σag, σenv) |= ϕ. Such strategies are called win-
ning strategies. A specification ϕ is agent enforceable if
some agent strategy enforces it. The set of all such agent
strategies is denoted by Σϕ

ag. The notion of environment en-
forceability, σenv B ϕ, and the set Σϕ

env of all environment
strategies enforcing ϕ, are defined similarly, e.g., σenv B ϕ
if ∀σag ∈ Σall

ag . PLAY(σag, σenv) |= ϕ. Given an LTL for-
mula ϕ (the goal), the synthesis problem for the agent is to
devise a strategy σag for the agent that enforces ϕ, i.e., such
that σag B ϕ. The synthesis problem for the environment is
defined similarly. Note that if a strategy exists, also a finite-
state one exists, i.e., one that is computed by a finite-state
transducer [Pnueli and Rosner, 1989].
Theorem 1. [Pnueli and Rosner, 1989] Solving the LTL syn-
thesis problem is 2EXPTIME-complete.
Environment specifications. In most AI scenarios the
agent has some knowledge of how the environment works,
which the agent can exploit in order to enforce its goals.
To capture this, besides the specification of the goal, we
introduce a specification of the environment. In particular,
an environment specification is also given by an LTL for-
mula E and, following [Aminof et al., 2019a], it determines
the set ΣEenv of strategies that the environment can adopt,
i.e., those that enforce E . Formally, let ΣEenv

.
= {σenv ∈

Σall
env | σenv B E}. For the environment specification to be

useful, one requires that ΣEenv to be nonempty, i.e., that E
is environment-enforceable. Given an LTL formula ϕ and
LTL specification E (typically assumed to be environment-
enforceable), the synthesis under environment specifications
problem concerns determining an agent strategy σag such
that: ∀σenv ∈ ΣEenv. PLAY(σag, σenv) |= ϕ. It can be shown
that most forms of planning with LTL goals, including on
nondeterministic domains, are special cases of this synthesis
problem, see [Aminof et al., 2019a]. Moreover:
Theorem 2. [Aminof et al., 2019a] Solving LTL synthesis un-
der environment specifications is 2EXPTIME-complete.

We observe that the verification literature on synthesis
under assumptions, e.g., [Chatterjee and Henzinger, 2007],
gives one an alternative (weaker) way to interpret LTL envi-
ronment specifications E , i.e., E directly restricts the traces of
interest to the ones that satisfy E (in contrast, we restrict the
strategies to the ones that enforce E). In that case, synthesis
amounts to devising a strategy of the agent that enforces the
implication E ⊃ ϕ. It turns out, that while these two ways
of interpreting environment specifications are distinct, their
synthesis problems are inter-reducible [Aminof et al., 2019a].
We will return to this point at the end of Section 3.



3 Synthesis Under Expected and Exceptional
Environment Specifications

Consider a setting with two environment specifications — E
captures the “expected” behaviors of the environment, while
E ′ captures, in addition, “exceptional” behaviors of the envi-
ronment, i.e., satisfying the following constraints (†):

1. the goal ϕ, and environment specifications E and E ′ are
LTL formulas;

2. ΣEenv ⊆ ΣE
′

env;
Furthermore, we will be mostly interested in the case where ϕ
is agent-enforceable under E but not under E ′, i.e., no agent
strategy works (to satisfy the goal) against all environment
strategies in ΣE

′

env, but there may be agent strategies that work
against some of them. Although it may not be clear what a
good agent-strategy should do, there is a basic principle about
what it should not do: it should not do anything for which it
can do better. Said positively, it should do a “best effort”.
Intuitively, the agent should use a strategy that enforces the
goal under E , and also achieve the goal, as much as possible,
under E ′. Before we formalize this, consider the following:
Example 1. Take a robot whose goal is to go from the lobby
to the roof using either the main elevator (ME) or the service
elevator (SE). The robot starts by ME, and has 20 time-steps
worth of battery life. There is a charging port inside each el-
evator (thus, once inside an elevator, it is certain to achieve
the goal). The trip between the elevators takes 11 time-steps.
Furthermore, the robot makes no partial trips (unless it runs
out of battery), and once an elevator arrives the robot imme-
diately takes it. The two environment specifications are:
• Expected (E): ME arrives within 5 time-steps of being

called; the timing of SE is unpredictable.
• Exceptional (E ′): as above, but one of the elevators may

be broken. Thus, in particular, if ME does not come
within 5 time-steps then it is broken.

Consider the following two types of strategies (1) wait for
ME until it comes or the battery runs out; (2) wait for ME for
0 ≤ w < 9 time-steps and then go to SE and wait there until
it comes, or the battery runs out. Below we give an intuitive
analysis of these strategies (the analysis will be formalised
after we define the concept of best-effort in the next section).

Under the expected specification, the robot can enforce the
goal using any strategy that waits at least 5 time-steps for ME
(and does whatever if it doesn’t arrive). In particular, it can do
so using the strategy of type (1). However, the strategy of type
(1) performs very poorly under the exceptional specification:
if ME is broken, the goal is guaranteed to never be achieved.

Nonetheless, strategies that (i) enforce the goal under the
expected specification, and (ii) do a best-effort under the ex-
ceptional specification — instead of hopelessly waiting for-
ever for an obviously broken ME — do exist (such strategies
will be captured by Definition 2 in Section 3). E.g., the strat-
egy of type (2) with w = 5. It is important to note that this
is not the only such strategy (i.e., it is not the “best” strategy)
and that any strategy of type (2) with 5 ≤ w < 9 is just as
good. While it seems that taking w = 5 gives the most oppor-
tunities to catch SE (“why wait by an obviously broken eleva-
tor?”), this is not true, as it implicitly assumes that the timing

of SE is independent of the robot’s actions — an assumption
that is not part of the specification. Indeed, when facing the
environment strategy that breaks ME and then sends SE to the
lobby at time max(w + 1, 27 − w), the robot would achieve
the goal if it chooses w = 8, but not if it takes w = 5.

Best-Effort Strategies. To formalize the notion of best-
effort strategy, we first define what it means for an agent strat-
egy to be better than another. The notion is sometimes called
weak-dominance [Apt and Grädel, 2011]. Here we call it sim-
ply dominance. Let E be an environment specification, and let
ϕ be an agent goal. Define a binary relation ≥ϕ|E on agent
strategies:

Definition 1 (Dominance). σ1 ≥ϕ|E σ2 iff for every σenv ∈
ΣEenv, PLAY(σ2, σenv) |= ϕ implies PLAY(σ1, σenv) |= ϕ. As
usual, write σ1 >ϕ|E σ2 iff σ1 ≥ϕ|E σ2 and σ2 �ϕ|E σ1. If
σ1 >ϕ|E σ2 we say that σ1 dominates σ2 (for goal ϕ under
environment specification E).

Note that ≥ϕ|E is a preorder, and >ϕ|E is a strict partial
order. For a set Σag of agent strategies, we say that σ2 ∈ Σag

is maximal (with respect to >ϕ|E ) if there is no σ1 ∈ Σag

such that σ1 >ϕ|E σ2. The set of such maximal strategies is
denoted MAXϕ|E(Σag).

Intuitively, σ1 >ϕ|E σ2 means that σ1 does as least as well
as σ2 against every environment strategy enforcing E , and
strictly better against at least one such environment strategy.
In particular, if σ2 is not maximal, say σ1 dominates it, then
an agent that uses σ2 is not doing its “best” to achieve the
goal: if it used σ1 instead, it could achieve the goal against a
strictly larger set of environment strategies. Thus, within our
framework, we consider maximal strategies as doing a “best-
effort” to achieve the goal. See the related-work discussion
for more on interpreting maximal strategies as “best-effort”.

Obviously, enforcing strategies dominate all others. Thus:

Proposition 3. If ϕ is agent-enforceable under E , then
MAXϕ|E(Σ

all
ag ) is the set of strategies enforcing ϕ under E .

Going back to Example 1, we remark that we have seen that
if an agent only focuses on strategies that enforce the goal ϕ
under the expected specification E , it may result in strategies
that fall short of the ideal. We now argue that only focusing
on strategies that are best-effort under the exceptional spec-
ification E ′ may also fall short of the ideal. Indeed, since
under this specification it is not clear which elevator works,
and what the timing of the service elevator is, no strategy of
type (2) is better than another, i.e., they are all making a best-
effort for the goal under E ′. This includes the strategy that
immediately goes to SE and waits there, which clearly does
not enforce the goal under E .

The Synthesis Problem. We now formally define the syn-
thesis problem under expected and exceptional environments.

Definition 2. Given ϕ, E , E ′ satisfying (†), find an agent
strategy in MAXϕ|E′(Σ

ϕ
ag).

In words: amongst the agent strategies enforcing ϕ under
the expected environment specification E (if any), find one
that does the best-effort for ϕ under the exceptional environ-
ment specification E ′. Note that the case E = E ′ is synthesis



under environment specifications (cf. Theorem 2), and the
cast E = E ′ = true is classical synthesis (cf. Theorem 1).

Our synthesis problem has two important properties, cap-
tured by Theorems 4 and 7 below. The first is that if a goal ϕ
is agent-enforceable under the expected specification E , then
there always exists a strategy that enforces ϕ under the ex-
pected specification E and that is best-effort under the excep-
tional specification E ′:
Theorem 4. Given ϕ, E , E ′ satisfying (†), if ϕ is agent-
enforceable under E , then MAXϕ|E′(MAXϕ|E(Σ

all
ag )) 6= ∅.

The proof of this theorem requires a sophisticated argu-
ment, which we now sketch. We start by giving alternative
characterizations of dominance and maximality, which are of
interest in their own right. These characterizations are adap-
tations of ones in [Berwanger, 2007] to our setting. Intu-
itively, one assigns to a strategy σag, and an environment-
history h ∈ (2X)+, the value +1 (winning) if σag, starting
from h, enforces ϕ under E ; the value −1 (losing) if σag,
starting from h, enforces ¬ϕ under E ; and 0 (pending) oth-
erwise. The characterization says that σ1 ≥ϕ|E σ2 iff the
value of σ1 is as least as big as that of σ2 on all environ-
ment histories at which σ1, σ2 agree except for the last point.
Formally, an environment-history h ∈ (2X)+ is the projec-
tion of a (joint) history h′ ∈ (2X∪Y )+ if hn = h′n ∩ X for
all n < |h|. Say that h is compatible with σag, σenv iff h
is the projection of a prefix of PLAY(σag, σenv). Given a set
Σenv of environment strategies, let H(σag,Σenv) be the set
of environment histories compatible with σag, σenv for some
σenv ∈ Σenv. Given a goal ϕ and an environment specification
E , for every h ∈ H(σag,Σ

E
env), let:

• valϕ|E(σag, h) := +1 (winning) if PLAY(σag, σenv) |=
ϕ for every σenv ∈ ΣEenv such that h ∈ H(σag, {σenv});
• valϕ|E(σag, h) := −1 (losing) if PLAY(σag, σenv) |= ¬ϕ

for every σenv ∈ ΣEenv such that h ∈ H(σag, {σenv});
• valϕ|E(σag, h) := 0 (pending) otherwise.
Agent-strategies σ1, σ2 split at an environment-history h if

σ1(h′) = σ2(h′) for every proper prefix h′ of h, but σ1(h) 6=
σ2(h). Since σ1, σ2 agree on proper prefixes of h, then, for
every environment strategy σenv, the history h is compatible
with σ1, σenv iff it is compatible with σ2, σenv. If σ1, σ2 split
at h, denote by σ1[h ← σ2] the strategy that agrees with σ1
everywhere, except on h and all its extensions where it agrees
with σ2. A set Σag is closed under shifting if for all σ1, σ2 ∈
Σag and every h at which they split, σ1[h← σ2] ∈ Σag.
Lemma 5 (Characterization of Dominance). Given a goal ϕ,
an environment specification E , and agent strategies σ1, σ2,
then A) σ1 ≥ϕ|E σ2 iff for every h ∈ H(σ1,Σ

E
env), if σ1, σ2

split at h then: (i) valϕ|E(σ1, h) ≥ valϕ|E(σ2, h), and (ii)
it is not the case that valϕ|E(σ1, h) = valϕ|E(σ2, h) = 0.
Furthermore, B) σ1 >ϕ|E σ2 iff also (iii) σ1, σ2 split at some
h ∈ H(σ1,Σ

E
env) such that valϕ|E(σ1, h) > valϕ|E(σ2, h).

Proof sketch. We will show case A. For i ∈ {1, 2}, let ‡i
denote that PLAY(σi, σenv) |= ϕ. Suppose (i) and (ii) hold
for σ1, σ2. To see that σ1 ≥ϕ|E σ2 we show that for ev-
ery σenv ∈ ΣEenv for which ‡2 holds, also ‡1 holds. Indeed,

if PLAY(σ1, σenv) 6= PLAY(σ2, σenv), let h be the longest
common environment-history compatible with σ1, σenv and
σ2, σenv, and note that σ1, σ2 split at h. If ‡2 holds then
valϕ|E(σ2, h) ≥ 0 which implies, by (i) and (ii), that
valϕ|E(σ1, h) = 1, and in particular ‡1 holds.

For the converse, suppose that for some h at which σ1, σ2
split, either (i) or (ii) is violated. We will show that σ1 6≥ϕ|E
σ2, i.e., that there is σenv ∈ ΣEenv such that ‡2 holds but ‡1
does not. If (i) fails then at h either σ1 is losing and σ2 is
pending/winning, or σ1 is pending and σ2 is winning. In ei-
ther case, for some σenv, ‡2 holds but not ‡1. If (ii) fails,
there are strategies δ1, δ2 ∈ ΣEenv, such that h is compati-
ble with both σ1, δ1 and σ2, δ2, and PLAY(σ1, δ1) |= ¬ϕ and
PLAY(σ2, δ2) |= ϕ. Let w ∈ (2Y )+ be the agent-history
describing the outputs of σ1 (as well as σ2, since they agree
on these prefixes) on the proper prefixes of h. Consider the
environment-strategy σenv that agrees with δ1 everywhere, ex-
cept onw·σ2(h) and all its extensions where it agrees with δ2,
and observe that ‡2 holds but not ‡1. Note that σenv ∈ ΣEenv
since both δ1 and δ2 enforce E .

Lemma 6 (Characterization of Maximality). For Σag closed
under shifting, σ ∈ MAXϕ|E(Σag) iff for every σ′ ∈ Σag, and
every h ∈ H(σ,ΣEenv) at which σ, σ′ split, valϕ|E(σ, h) ≥
valϕ|E(σ

′, h).

Proof sketch. If valϕ|E(σ, h) < valϕ|E(σ
′, h) then σ 6∈

MAXϕ|E(Σag) since, by Lemma 5, it is dominated by σ[h ←
σ′]. For the other direction, if σ′ dominates σ then by
Lemma 5, valϕ|E(σ′, h) > valϕ|E(σ, h) for some h.

Proof Sketch of Theorem 4. Since ϕ is enforceable under E
then, by Proposition 3,Σag

.
= MAXϕ|E(Σ

all
ag ) is not empty. It

remains to construct a strategy σag ∈ MAXϕ|E′(Σag), which
we do by constructing a chain of strategies, σ1, σ2, · · · that
eventually stabilises on each history, and then let σag be the
point-wise limit of this sequence, i.e., σag(h) := limi σi(h).
We start with an arbitrary strategy σ0 ∈ Σag, and process
the environment histories in increasing length-lexicographic
order. At step i ≥ 1, consider the smallest history h not
yet marked as stabilized, and mark it. Let Σh ⊆ Σag be
the set of strategies that agree with σi on all proper prefixes
of h, and let σ ∈ Σh be a strategy for which valϕ|E′(σ, h)
is the highest. If valϕ|E′(σi, h) < valϕ|E′(σ, h), then let
σi+1

.
= σi[h ← σ], and otherwise let σi+1

.
= σi. Moreover,

if valϕ|E′(σi+1, h) 6= 0, then also mark all the extensions of
h as stabilized. The full proof shows that valϕ|E′(σi, h) can-
not deteriorate after h is marked and thus, by Lemma 5, σag
is not dominated. Finally, using a careful argument involv-
ing Lemma 6 and the fact that ΣEenv ⊆ ΣE

′

env, one shows that
σag ∈ Σag, and conclude that σag ∈ MAXϕ|E′(Σag).

The second important property of our synthesis problem is
that instead of taking the best-effort strategies for ϕ assuming
E , and amongst those choosing one that is best-effort for ϕ
assuming E ′, one can simply pick a strategy that is both best-
effort for ϕ assuming E and best-effort for ϕ assuming E ′.
Theorem 7. If ϕ, E , E ′ satisfy the constraint (†) then
MAXϕ|E′(MAXϕ|E(Σ

all
ag )) = MAXϕ|E(Σ

all
ag )∩MAXϕ|E′(Σ

all
ag ).



Proof Sketch. Let Σag
.
= MAXϕ|E(Σ

all
ag ) and observe that

MAXϕ|E′(Σ
all
ag )∩Σag ⊆ MAXϕ|E′(Σag) since a strategy σag ∈

Σag that is not dominated by any strategy is also not domi-
nated by any strategy in Σag. For the reverse inclusion, ob-
serve that we only need to show that if σag ∈ MAXϕ|E′(Σag)

then σag ∈ MAXϕ|E′(Σ
all
ag ), i.e., no strategy whatsoever is

>ϕ|E′ σag. Suppose σ >ϕ|E′ σag. Then σ ≥ϕ|E σag by item
(2) in the constraint (†). But σag is ≥ϕ|E -maximal, hence so
is σ, i.e., σ ∈ Σag. Since σag ∈ MAXϕ|E′(Σag), no strategy in
Σag is >ϕ|E′ σag, which is a contradiction.

We now discuss this theorem for the case that ϕ is agent-
enforceable under the expected specification E . In this case,
by Proposition 3, the agent-strategies that are best-effort for ϕ
under E are simply those that enforce ϕ under E . Then, The-
orem 7 implies that solving the synthesis problem amounts
to finding an agent strategy that enforces the goal under the
expected environment on the one hand, and does a best-effort
under the exceptional environment on the other hand. Thus,
there is no trade-off between enforcing the goal under the ex-
pected environment specification, and making a best-effort
for it under the exceptional one. This is quite surprising since
it is analogous to saying that to get the tallest professors one
can get the tallest people and intersect them with the profes-
sors. Indeed, there is no reason to think that there are any
professors among the tallest people.

Interestingly, an analogue of Theorem 7 fails under the al-
ternative view that environment specifications restrict traces
of interest as in [Chatterjee and Henzinger, 2007], instead of
environment strategies as in [Aminof et al., 2019a] and this
paper (cf. Section 2).

Proposition 8. There exist LTL formulas ϕ, E , and
E ′ with |= E ⊃ E ′, the formula E ⊃ ϕ agent-
enforceable, the formula E ′ ⊃ ϕ not agent-enforceable,
such that MAXE⊃ϕ|true(Σ

all
ag ) ∩ MAXE′⊃ϕ|true(Σ

all
ag ) = ∅ and

MAXE′⊃ϕ|true(MAXE⊃ϕ|true(Σ
all
ag )) 6= ∅.

Proof. Let X .
= {x}, Y .

= {y}, E .
= x ⊃ G y, E ′ := true

and ϕ .
= x ⊃ (GFx ∧ G y). Then, strategies in the set M

of maximal agent-strategies for E ⊃ ϕ do the following: if
the environment starts with ¬x then they can do anything
(since, in this case, both E and ϕ are true); if the environ-
ment starts with x then at some point they do ¬y (since, do-
ing this, the agent ensures that the assumption E fails, and
thus E ⊃ ϕ is satisfied). On the other hand, strategies in
the set M ′ of maximal agent-strategies for E ′ ⊃ ϕ, i.e., for
ϕ, do the following: if the environment does ¬x they can
do anything, and otherwise they always do y (which ensures,
in this case, that ϕ is satisfied if the environment does x in-
finitely often). Note, however, that M ∩ M ′ = ∅. On the
other hand MAXE′⊃ϕ|true(MAXE⊃ϕ|true(Σ

all
ag )) is non-empty

(indeed, it contains all strategies in M .)

Hence, even if the two views of environment specifications
share most properties when synthesizing under single envi-
ronment specifications [Aminof et al., 2019a], they do not
under expected and exceptional environment specifications.

4 Decidability of Synthesis
Next we show that the synthesis problem is decidable. We
do so using an automata-theoretic approach. We represent
strategies as trees, build tree-automata that recognize the sets
MAXϕ|E′(Σ

all
ag ) and Σϕ

ag, then pick a strategy (if one exists) in
their intersection. This outline is correct by Theorem 7 and
Proposition 3.
Theorem 9. There is an algorithm that solves the problem of
synthesis under expected and exceptional environments, i.e.,
that given ϕ, E , E ′ satisfying (†) returns a finite-state strategy
in MAXϕ|E′(Σ

ϕ
ag).

We give a succinct review of the relevant notation and re-
sults about tree automata, see [Grädel et al., 2002].
Encoding. Functions of the form f : B∗ → A can be thought
of as B-branching A-labeled trees, i.e., the nodes are the el-
ements of B∗ and the label of w is f(w). Similarly, a pair
(f1, f2) of functions fi : B∗ → A can be encoded as the tree
in which node w ∈ A∗ is labeled by the pair (f1(w), f2(w)).
We encode agent-strategies, and pairs of agent-strategies in
this way, i.e., B .

= 2X , A
.
= 2Y (the label of the root is as-

sumed to be fixed since it does not encode anything).
Tree Automata. An alternating parity tree automata (APT) T
is a tuple (B,A,Q, q0, δ, c) a finite branching alphabet B, a
finite input alphabet A, a finite set of states Q, an initial state
q0 ∈ Q, a transition function δ : Q×A→ PosBool(B ×Q),
and a priority function c : Q → N. Here PosBool(X) is
the set of positive Boolean formulas over the atoms X . An
APT in which every formula is of the form

∧
b∈B(b, qb) is

called deterministic. Tree automata take trees t : B∗ → A
as input, and process them, starting at the root in the ini-
tial state. Intuitively, if the APT is at node w ∈ A∗ of the
input tree t, and the current state is q ∈ Q, then the APT
picks a satisfying assignment C ⊆ B × Q of the formula
δ(q, t(w)) and, for each (b, q) ∈ C sends a copy of itself
in state q in the direction b. Intuitively, a tree t is accepted
by an APT T if the evolution of every sequence of copies
has the property that the smallest priority seen infinitely of-
ten is even. The set of all trees accepted by T is called the
language of T . APTs are effectively closed under Boolean
operations and projection. Moreover, one can decide, given
an APT T , if its language is non-empty, and in this case also
extract a finite-state representation of some t accepted by T .
We also use automata on words. We can think of words as
trees with |B| = 1, i.e., no branching. In this case we will
ignore B and write δ : Q × A → PosBool(Q). Given an
LTL formula ϕ, one can construct a deterministic parity word
automaton (DPW)Dϕ accepting exactly the models of ϕ. We
write Dϕ = (2AP , Qϕ, qϕ, δϕ, cϕ).

Proof Sketch of Theorem 9. The interesting step is to show
how to build an APTD′ that accepts exactly the pairs (σ1, σ2)
of agent strategies such that σ1 6≥ϕ|E′ σ2. Given this, one can
build an APT Mϕ|E′ that accepts exactly the agent strategies
σ in MAXϕ|E′(Σ

all
ag ) by using the fact that maximality is de-

finable in terms of D′, Boolean operations, and projection,
i.e., following Definition 1, σ is maximal iff ¬∃σ′. (σ′ ≥ϕ|E′

σ)∧ (σ 6≥ϕ|E′ σ
′). Finally, one can extract a finite-state strat-

egy from Mϕ|E′ .



To illustrate some of the core ideas, we first sketch how to
build an APT T ′ that accepts σag iff σag does not enforce
ϕ under E ′, i.e., iff there exists σenv such that σenv B E ′
and PLAY(σag, σenv) |= ¬ϕ. Let DE′ and D¬ϕ be DPWs
for E ′ and ¬ϕ respectively. Intuitively, T ′ will use its
nondeterminism to guess σenv (step by step), and simulate
DE′ to verify σenv B E ′, and simulate D¬ϕ to verify that
PLAY(σag, σenv) |= ¬ϕ.

The states of T ′ are of the form (s, q) and s where s ∈ QE′
and q ∈ Q¬ϕ. For the transitions, we describe what the au-
tomaton does when it is at node w ∈ (2X)∗ in a given state.
When w is the empty string, the APT T ′ nondeterministi-
cally chooses X ′ ⊆ X and sends a copy in state (sE′ , q¬ϕ) in
direction X ′ (this corresponds to guessing σenv(λ), the first
action of the environment). When w is not the empty-string,
the APT T ′ reads the agent action σag(w) ⊆ Y , and works
differently depending if it is in a state of the form (s, q) or s.

If the APT T ′ is in a state of the form (s, q) it does two
things: 1) for every Y ′′ ⊆ Y such that Y ′′ 6= σag(w), it non-
deterministically chooses an environment action X ′′ ⊆ X
and sends in direction X ′′ a copy of DE′ in state s′ :=
δE′(s,X

′′ ∪ Y ′′); and 2) for Y ′′ = σag(w), it also guesses
an environment action X ′′ ⊆ X and sends (s′, q′) in direc-
tion X ′′ where s′ is as before and q′ := δ¬ϕ(q,X ′′ ∪ Y ′′).
Intuitively, 1) means that T ′ is implicitly guessing an envi-
ronment strategy σenv and checks that it enforces E ′; and 2)
means that it checks that PLAY(σag, σenv) satisfies ¬ϕ.

If the APT T ′ is in a state of the form s it does the
following: for every Y ′′ ⊆ Y (including the current la-
bel) it nondeterministically chooses an environment action
X ′′ ⊆ X and sends in direction X ′′ a copy of DE′ in state
s′ := δE′(s,X

′′ ∪ Y ′′). Intuitively, this is like 1) in the pre-
vious case, except that since it is at a node that is not on
PLAY(σag, σenv) it no longer simulates D¬ϕ.

We now describe how to adapt this construction to build
the APT D′. Recall that we require that D′ accepts (σ1, σ2)
iff there exists σenv B E ′ such that PLAY(σ1, σenv) |= ¬ϕ
and PLAY(σ2, σenv) |= ϕ. The states of D′ are of the form
(s, q, r), (s, q), (s, r), and s, where s ∈ QE′ , q ∈ Q¬ϕ, and
r ∈ Qϕ. Intuitively, transitions from states of the form s and
(s, q) are as before, transitions from states (s, r) are like those
of (s, q) but they use the automaton Dϕ instead of D¬ϕ, and
transitions of the form (s, q, r) from node w ∈ (2X)+ send
copies of the form (s′, q′, r′) if σ1(w) = σ2(w), and copies
of the form (s′, q′) and (s′, r′) otherwise. In any case, they
also send copies of the form s′, as before. Thus, the copies of
s verify that σenv B E ′, the copies of q that PLAY(σ1, σenv) |=
¬ϕ, and the copies of r that PLAY(σ2, σenv) |= ϕ.

5 Related Work and Conclusions
Agents in our framework have two models of environment be-
haviour, expected and exceptional. The importance of multi-
ple environment models is recognized in other work on agents
operating in complex AI scenarios. E.g., in [Chakraborti et
al., 2019] agents use one model of the world to plan, and a
different model is used for explanations for the human oper-
ator, and in [De Giacomo et al., 2019; Camacho et al., 2019]
reinforcement learning agents complement their features ex-

tracted from the world with a second model which specifies
rewards based on knowledge representation.

An alternative approach to capturing expected behaviour is
to use a stochastic setting. In the usual approach to synthe-
sis for probabilistic systems the environment is not given as
a set of strategies, as we do, but rather as a single stochastic
system (e.g., as an MDP). This setting has been extended to
include a second environment in the so-called “beyond worst-
case synthesis problem”, which concerns finding a strategy
that guarantees worst-case performance against an adversar-
ial environment, while maximising the expected performance
against a fixed stochastic environment [Bruyère et al., 2017].

The synthesis problem can be expressed in a number of
logics tailored for strategic reasoning. In particular, Strat-
egy Logic and its variants [Mogavero et al., 2014; Berthon et
al., 2017; Aminof et al., 2019b] — which can quantify over
variables for (possibly randomized) strategies — can natu-
rally express complex strategic properties, including domi-
nance and maximality.

“Best-effort” strategies, sometimes called “admissible”,
were studied in the verification literature, however, without
distinguishing expected from exceptional environments. For
instance, [Berwanger, 2007] studies the process of iteratively
avoiding dominated strategies, [Faella, 2009] justifies admis-
sibility amongst other solution-concepts in environments that
may not be adversarial, and [Brenguier et al., 2017] assumes
the environment has its own objective and both the agent and
the environment use non-dominated strategies.

Exceptional environments are related to safety analysis via
fault-injection [Bozzano and Villafiorita, 2007; Ezekiel et
al., 2011; Ezekiel and Lomuscio, 2017]. Specifically, ex-
ceptional environments may be seen as the result of muta-
tions from expected environments via fault-injection. While
safety-analysis is concerned with generating these mutated
models algorithmically using fault-profiles and then verifying
them, we assume that they are given and use them to synthe-
size agent strategies against them.

The exact complexity of the synthesis problem under ex-
pected and exceptional environments is left open. Other fu-
ture work includes finding better algorithms for special cases,
including nondeterministic planning domains and LTL formu-
las on finite traces for specifying non-Markovian domains.
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