Pure-Past Linear Temporal and Dynamic Logic

on Finite Traces

Giuseppe De Giacomo!, Antonio Di Stasio!, Francesco Fuggitti':?, Sasha Rubin?

'Universita degli Studi di Roma “La Sapienza”, Roma, Italy
2York University, Toronto, ON, Canada
SUniversity of Sydney, Sydney, NSW, Australia

{degiacomo, distasio, fuggitti}@diag.uniromal.it, sasha.rubin@sydney.edu.au

Abstract

We review PLTL; and PLDL¢, the pure-past versions of the well-known logics on finite traces LTL¢ and LDLy, respectively. PLTL¢ and PLDL¢ are logics about the past, and so scan the trace
backwards from the end towards the beginning. Because of this, we can exploit a foundational result on reverse languages to get an exponential improvement, over LTL;/LDL, for computing
the corresponding DFA. This exponential improvement is reflected in several forms of sequential decision making involving temporal specifications, such as planning and decision problems in
non-deterministic and non-Markovian domains. Interestingly, PLTL¢ (resp., PLDL) has the same expressive power as LTL¢ (resp., LDLy), but transforming a PLTL (resp., PLDLy) formula
into its equivalent LTLf (resp., LDLy) is quite expensive. Hence, to take advantage of the exponential improvement, properties of interest must be directly expressed in PLTL¢/PLDL; .

LTLf and LDLf

LTLy Is a variant of Linear-time Temporal

Logic (LTL) interpreted on finite, instead of
infinite, traces |1]. Given a set P of atomic
propositions, LTL; formulas ¢ are defined by:

pr=al-plerplop|oUy
where a € P, O is the next operator, and {/ is
the until operator. Derived future temporal
eventually G = TUY o
always Oy = - & —; and weak next
®p=-0-p.

operators are:

LDL; is a proper extension of LTLy that
captures regular expressions on finite traces.

pu=tt[—plprp| (o)

0 == ¢|p?lo+ol|o0] 0"
where ¢t denotes the LDL; true formula,
¢ propositional formulas over P, o path

expressions, and 7 the test construct.

Derived operators are: [o]p = —~(0)-p, ff =
—tt, and end = [truelff. Intuitively, (o)
states that there exists an execution satistying
the RE o such that its last step satisfies
whereas [p|y states that, from the current
step, all executions satisfying the RE p are
such that their last step satisfies .

PLTL; and PLDL;

PLTL; is the pure-past version of LTLy.

PLTL formulas are satisfied if they hold in
the last instant of the trace. Given the set
P, PLTL¢ formulas are defined as:

pi=al-plerplep|eSy
where a € P, © is the previous operator,
and S is the since operator. Derived past

temporal operators are: once & = TS ;
historically Bp = -&-.

PLDL/ is a proper extension of PLTLy, hence
the pure-past version of LDLy.

pu=tt[~plone| (o)
o ==¢lp?|o+eleoiolo
In PLDL/, the LDL; diamond operator is

replaced by a backward diamond operator.

Intuitively, (o) states that there exists a
point in the past, reachable (going backwards)
through the RE p from the current instant,
where ¢ holds. Derived operators are: [p]p =

-(o)-p, ff = —tt, and start = [true]ff.

Intuitively, [o]¢ states that, from the current
step, all executions satisfying the RE p (going
backwards) are such that their last step in
the past satisfies .

N

SAPIENZA

UNIVERSITA DI ROMA

VM

Examples

“every time you took the bus, you bought a new ticket beforehand”

PLTL: B(takeB o e(-takeB SbuyT))
LTLy: (buyT RtakeB) A O (takeB > (buyl v o(buyl R -takeB)))

“every time, if the cargo-ship departed (cs), then beforehand there was
an alternation of grab and unload (unl) of containers”

PLDL;: [true*]({cs)tt o ((unl; grab)*; (unl; grab))start)
LDLy: ((—cs+ (grab A —cs); (unl; (grab A —=cs))*; (cs Aunl)); ~cs*)end

From ¢ to Automata

For LTL¢/LDL formulas the translation is worst-case 2EXPTIME:

4) 4 h 4) 4)

LTLJ(:gJDLf » AFA » NFA > D(ESA‘
\ J Iin _ J EXP \ J EXP \ J/

Figure 1: Translation algorithm from LTL /LDL ¢ formulas to DFA

For PLTL¢/PLDL/ formulas the translation is worst-case EXPTIME:

) 4) 4) 4)

PLTL;/PLDL; LTL;/LDL¢ AFA DFA

(L) | (£rev) | (ﬁrev) > ([,)
\ y lin g y lin g) EXP { y

Figure 2: Translation algorithm from PLTL /PLDL ¢ formulas to DFA

This is due to a fundamental property of alternating finite-state automata (AFA) |2|, for
which one can obtain directly the DFA of the reverse language, namely moving from a past
view of the trace to a future one.

Transformations

Here, we summarize all the transformations and the relationship between LTL/LDL¢ and
PLTL;/PLDLy that we reviewed in the paper.

Implications

The exponential gain in transforming
PLTL;/PLDL; formulas into DFAs, with
respect to LTL;/LDLy, is reflected in an
exponential gain in solving several forms
of sequential decision making problems
involving temporal specifications.

?Synthesis j

[BPMJ

Takeaways

If you can naturally express the specifica-
tion in PLTL¢/PLDLy, then do it to get the
computational advantage

Converting LTL;/LDLf to PLTLy/PLDLy
to get the exponential advantage is not
computationally sensible

Complexities are just worst-case, in most
Al applications the size of the resulting DFA
is actually manageable

Acknowledgements

Work partially supported by the FEuro-
pean Research Council under the European
Union’s Horizon 2020 Programme through

the ERC Advanced Grant WhiteMech (No.
834228).

L e comprahessiie Rasseniny % oz, \ -
_===Manufacuring ==
==mechanisms; s =
et Planning’=ns=
¥ Data-awaresss. -
WRITEDOX > SystemaBes

“WiniteMech!

EA\ e z-n;‘ Vl-"Jmﬂ‘ulln O oL s W TOacNO = 1 \ o
Knowledue:zRepresentation
T meeSUfItheSISEN="
Z:sgli:programmings-
- ESDusiness Processes=

- "L - sutmetically communmy

References

1] G. De Giacomo and M. Vardi.

Linear temporal logic and linear dynamic logic on
finite traces.

In IJCAIL 2013.

2] A. Chandra, D. Kozen, and L. Stockmeyer.
Alternation.
J. of the ACM, 28(1), 1981.

)=

<2 THE UNIVERSITY OF

ey OYDNEY

* K

