Pure-Past Linear Temporal and Dynamic Logic on Finite Traces

Giuseppe De Giacomo¹, Antonio Di Stasio¹, Francesco Fuggitti^{1,2}, Sasha Rubin³

¹Università degli Studi di Roma "La Sapienza", Roma, Italy ²York University, Toronto, ON, Canada ³University of Sydney, Sydney, NSW, Australia

{degiacomo, distasio, fuggitti}@diag.uniroma1.it, sasha.rubin@sydney.edu.au

Abstract

We review $PLTL_f$ and $PLDL_f$, the pure-past versions of the well-known logics on finite traces LTL_f and LDL_f , respectively. $PLTL_f$ and $PLDL_f$ are logics about the past, and so scan the trace backwards from the end towards the beginning. Because of this, we can exploit a foundational result on reverse languages to get an exponential improvement, over LTL_f/LDL_f , for computing the corresponding DFA. This exponential improvement is reflected in several forms of sequential decision making involving temporal specifications, such as planning and decision problems in non-deterministic and non-Markovian domains. Interestingly, $PLTL_f$ (resp., $PLDL_f$) has the same expressive power as LTL_f (resp., LDL_f), but transforming a $PLTL_f$ (resp., $PLDL_f$) formula into its equivalent LTL_f (resp., LDL_f) is quite expensive. Hence, to take advantage of the exponential improvement, properties of interest must be directly expressed in $PLTL_f/PLDL_f$.

\mathbf{LTL}_f and \mathbf{LDL}_f

 LTL_f is a variant of Linear-time Temporal Logic (LTL) interpreted on *finite*, instead of infinite, traces [1]. Given a set \mathcal{P} of atomic propositions, LTL_f formulas φ are defined by:

$$\varphi := a \mid \neg \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi$$

where $a \in \mathcal{P}$, \bigcirc is the **next** operator, and \mathcal{U} is the **until** operator. Derived future temporal operators are: **eventually** $\diamond \varphi \doteq \top \mathcal{U} \varphi$; always $\Box \varphi \doteq \neg \diamondsuit \neg \varphi$; and weak next $\bullet \varphi \doteq \neg \bigcirc \neg \varphi.$

 LDL_f is a proper extension of LTL_f that captures regular expressions on finite traces.

$$\varphi ::= tt \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \varrho \rangle \varphi$$

$$\varrho ::= \phi \mid \varphi? \mid \varrho + \varrho \mid \varrho; \varrho \mid \varrho^*$$

where tt denotes the LDL_f true formula, ϕ propositional formulas over \mathcal{P} , ϱ path expressions, and φ ? the test construct. Derived operators are: $[\varrho]\varphi \doteq \neg \langle \varrho \rangle \neg \varphi, ff \doteq$ $\neg tt$, and end = [true]ff. Intuitively, $\langle \varrho \rangle \varphi$ states that there exists an execution satisfying the RE ϱ such that its last step satisfies φ ; whereas $[\rho]\varphi$ states that, from the current step, all executions satisfying the RE ϱ are such that their last step satisfies φ .

$PLTL_f$ and $PLDL_f$

 $PLTL_f$ is the *pure-past* version of LTL_f . $\overline{\mathrm{PLTL}_f}$ formulas are satisfied if they hold in the last instant of the trace. Given the set \mathcal{P} , PLTL_f formulas are defined as:

$$\varphi := a \mid \neg \varphi \mid \varphi \land \varphi \mid \ominus \varphi \mid \varphi \mathcal{S} \varphi$$

where $a \in \mathcal{P}$, Θ is the **previous** operator, and \mathcal{S} is the **since** operator. Derived past temporal operators are: **once** $\Leftrightarrow \varphi \doteq \top \mathcal{S} \varphi$; historically $\Box \varphi \doteq \neg \diamondsuit \neg \varphi$.

 $PLDL_f$ is a proper extension of $PLTL_f$, hence the pure-past version of LDL_f.

$$\varphi ::= tt \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \varrho \rangle \rangle \varphi$$

$$\varrho ::= \phi \mid \varphi? \mid \varrho + \varrho \mid \varrho; \varrho \mid \varrho^*$$

In $PLDL_f$, the LDL_f diamond operator is replaced by a backward diamond operator. Intuitively, $\langle \langle \varrho \rangle \rangle \varphi$ states that there exists a point in the past, reachable (going backwards) through the RE ϱ from the current instant, where φ holds. Derived operators are: $\llbracket \varrho \rrbracket \varphi \doteq$ $\neg \langle \langle \varrho \rangle \rangle \neg \varphi$, $ff = \neg tt$, and start = [true]ff. Intuitively, $[\![\varrho]\!]\varphi$ states that, from the current step, all executions satisfying the RE ϱ (going backwards) are such that their last step in the past satisfies φ .

Examples

"every time you took the bus, you bought a new ticket beforehand"

• PLTL_f: $\Box(takeB \supset \ominus(\neg takeB \mathcal{S} buyT))$

 LTL_f

• LTL_f: $(buyT \mathcal{R} takeB) \land \Box (takeB \supset (buyT \lor \bigcirc (buyT \mathcal{R} \neg takeB)))$

"every time, if the cargo-ship departed (cs), then beforehand there was an alternation of grab and unload (unl) of containers"

- PLDL_f: $[true^*](\langle cs \rangle tt \supset \langle (unl; grab)^*; (unl; grab) \rangle start)$
- LDL_f: $\langle (\neg cs + (grab \land \neg cs); (unl; (grab \land \neg cs))^*; (cs \land unl)); \neg cs^* \rangle end$

From φ to Automata

• For LTL_f/LDL_f formulas the translation is worst-case **2EXPTIME**:

Figure 1: Translation algorithm from LTL_f/LDL_f formulas to DFA

• For $PLTL_f/PLDL_f$ formulas the translation is worst-case **EXPTIME**:

Figure 2: Translation algorithm from $PLTL_f/PLDL_f$ formulas to DFA

This is due to a fundamental property of alternating finite-state automata (AFA) [2], for which one can obtain directly the DFA of the reverse language, namely moving from a past view of the trace to a future one.

Transformations

Here, we summarize all the transformations and the relationship between LTL_f/LDL_f and $PLTL_f/PLDL_f$ that we reviewed in the paper. LDL_f 2EXP NonElem

Implications

The exponential gain in transforming $PLTL_f/PLDL_f$ formulas into DFAs, with respect to LTL_f/LDL_f , is reflected in an exponential gain in solving several forms of sequential decision making problems involving temporal specifications.

Takeaways

- If you can *naturally* express the specification in $PLTL_f/PLDL_f$, then do it to get the computational advantage
- ② Converting LTL_f/LDL_f to $PLTL_f/PLDL_f$ to get the exponential advantage is **not** computationally sensible
- 3 Complexities are just worst-case, in most AI applications the size of the resulting DFA is actually manageable

Acknowledgements

Work partially supported by the European Research Council under the European Union's Horizon 2020 Programme through the ERC Advanced Grant WhiteMech (No. 834228).

References

[1] G. De Giacomo and M. Vardi.

Linear temporal logic and linear dynamic logic on finite traces.

In *IJCAI*, 2013.

[2] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation.

J. of the ACM, 28(1), 1981.

