Pure-Past Linear Temporal and Dynamic Logic on Finite Traces Giuseppe De Giacomo¹, Antonio Di Stasio¹, Francesco Fuggitti^{1,2}, Sasha Rubin³ ¹Università degli Studi di Roma "La Sapienza", Roma, Italy ²York University, Toronto, ON, Canada ³University of Sydney, Sydney, NSW, Australia {degiacomo, distasio, fuggitti}@diag.uniroma1.it, sasha.rubin@sydney.edu.au #### Abstract We review $PLTL_f$ and $PLDL_f$, the pure-past versions of the well-known logics on finite traces LTL_f and LDL_f , respectively. $PLTL_f$ and $PLDL_f$ are logics about the past, and so scan the trace backwards from the end towards the beginning. Because of this, we can exploit a foundational result on reverse languages to get an exponential improvement, over LTL_f/LDL_f , for computing the corresponding DFA. This exponential improvement is reflected in several forms of sequential decision making involving temporal specifications, such as planning and decision problems in non-deterministic and non-Markovian domains. Interestingly, $PLTL_f$ (resp., $PLDL_f$) has the same expressive power as LTL_f (resp., LDL_f), but transforming a $PLTL_f$ (resp., $PLDL_f$) formula into its equivalent LTL_f (resp., LDL_f) is quite expensive. Hence, to take advantage of the exponential improvement, properties of interest must be directly expressed in $PLTL_f/PLDL_f$. ### \mathbf{LTL}_f and \mathbf{LDL}_f LTL_f is a variant of Linear-time Temporal Logic (LTL) interpreted on *finite*, instead of infinite, traces [1]. Given a set \mathcal{P} of atomic propositions, LTL_f formulas φ are defined by: $$\varphi := a \mid \neg \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi$$ where $a \in \mathcal{P}$, \bigcirc is the **next** operator, and \mathcal{U} is the **until** operator. Derived future temporal operators are: **eventually** $\diamond \varphi \doteq \top \mathcal{U} \varphi$; always $\Box \varphi \doteq \neg \diamondsuit \neg \varphi$; and weak next $\bullet \varphi \doteq \neg \bigcirc \neg \varphi.$ LDL_f is a proper extension of LTL_f that captures regular expressions on finite traces. $$\varphi ::= tt \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \varrho \rangle \varphi$$ $$\varrho ::= \phi \mid \varphi? \mid \varrho + \varrho \mid \varrho; \varrho \mid \varrho^*$$ where tt denotes the LDL_f true formula, ϕ propositional formulas over \mathcal{P} , ϱ path expressions, and φ ? the test construct. Derived operators are: $[\varrho]\varphi \doteq \neg \langle \varrho \rangle \neg \varphi, ff \doteq$ $\neg tt$, and end = [true]ff. Intuitively, $\langle \varrho \rangle \varphi$ states that there exists an execution satisfying the RE ϱ such that its last step satisfies φ ; whereas $[\rho]\varphi$ states that, from the current step, all executions satisfying the RE ϱ are such that their last step satisfies φ . ### $PLTL_f$ and $PLDL_f$ $PLTL_f$ is the *pure-past* version of LTL_f . $\overline{\mathrm{PLTL}_f}$ formulas are satisfied if they hold in the last instant of the trace. Given the set \mathcal{P} , PLTL_f formulas are defined as: $$\varphi := a \mid \neg \varphi \mid \varphi \land \varphi \mid \ominus \varphi \mid \varphi \mathcal{S} \varphi$$ where $a \in \mathcal{P}$, Θ is the **previous** operator, and \mathcal{S} is the **since** operator. Derived past temporal operators are: **once** $\Leftrightarrow \varphi \doteq \top \mathcal{S} \varphi$; historically $\Box \varphi \doteq \neg \diamondsuit \neg \varphi$. $PLDL_f$ is a proper extension of $PLTL_f$, hence the pure-past version of LDL_f. $$\varphi ::= tt \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \varrho \rangle \rangle \varphi$$ $$\varrho ::= \phi \mid \varphi? \mid \varrho + \varrho \mid \varrho; \varrho \mid \varrho^*$$ In $PLDL_f$, the LDL_f diamond operator is replaced by a backward diamond operator. Intuitively, $\langle \langle \varrho \rangle \rangle \varphi$ states that there exists a point in the past, reachable (going backwards) through the RE ϱ from the current instant, where φ holds. Derived operators are: $\llbracket \varrho \rrbracket \varphi \doteq$ $\neg \langle \langle \varrho \rangle \rangle \neg \varphi$, $ff = \neg tt$, and start = [true]ff. Intuitively, $[\![\varrho]\!]\varphi$ states that, from the current step, all executions satisfying the RE ϱ (going backwards) are such that their last step in the past satisfies φ . ### Examples "every time you took the bus, you bought a new ticket beforehand" • PLTL_f: $\Box(takeB \supset \ominus(\neg takeB \mathcal{S} buyT))$ LTL_f • LTL_f: $(buyT \mathcal{R} takeB) \land \Box (takeB \supset (buyT \lor \bigcirc (buyT \mathcal{R} \neg takeB)))$ "every time, if the cargo-ship departed (cs), then beforehand there was an alternation of grab and unload (unl) of containers" - PLDL_f: $[true^*](\langle cs \rangle tt \supset \langle (unl; grab)^*; (unl; grab) \rangle start)$ - LDL_f: $\langle (\neg cs + (grab \land \neg cs); (unl; (grab \land \neg cs))^*; (cs \land unl)); \neg cs^* \rangle end$ ### From φ to Automata • For LTL_f/LDL_f formulas the translation is worst-case **2EXPTIME**: Figure 1: Translation algorithm from LTL_f/LDL_f formulas to DFA • For $PLTL_f/PLDL_f$ formulas the translation is worst-case **EXPTIME**: Figure 2: Translation algorithm from $PLTL_f/PLDL_f$ formulas to DFA This is due to a fundamental property of alternating finite-state automata (AFA) [2], for which one can obtain directly the DFA of the reverse language, namely moving from a past view of the trace to a future one. **Transformations** ## Here, we summarize all the transformations and the relationship between LTL_f/LDL_f and $PLTL_f/PLDL_f$ that we reviewed in the paper. LDL_f 2EXP NonElem ### **Implications** The exponential gain in transforming $PLTL_f/PLDL_f$ formulas into DFAs, with respect to LTL_f/LDL_f , is reflected in an exponential gain in solving several forms of sequential decision making problems involving temporal specifications. ### **Takeaways** - If you can *naturally* express the specification in $PLTL_f/PLDL_f$, then do it to get the computational advantage - ② Converting LTL_f/LDL_f to $PLTL_f/PLDL_f$ to get the exponential advantage is **not** computationally sensible - 3 Complexities are just worst-case, in most AI applications the size of the resulting DFA is actually manageable ### Acknowledgements Work partially supported by the European Research Council under the European Union's Horizon 2020 Programme through the ERC Advanced Grant WhiteMech (No. 834228). ### References [1] G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In *IJCAI*, 2013. [2] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. of the ACM, 28(1), 1981.