
HyperLDL over Finite Traces
Giuseppe De Giacomo1 Paolo Felli2 Marco Montali2 Giuseppe Perelli1

1Sapienza University of Rome 2Free University of Bozen-Bolzano

Motivation

• The analysis of finite traces is important both in Artificial Intelligence, e.g. automated
planning, and Business Process Management, e.g., process mining.
• LTLf and LDLf are temporal logics widely used for the analysis of dynamic systems with
finite traces [1];
•Often, traces come as logs, that are (possibly infinite) sets of traces, typically generated by
a regular process;
•When analyzing logs, it becomes of interest to understand the relationships among
different traces, i.e., how different traces evolve with respect to one another;
•We propose a formalism based on LTLf/LDLf that is able to capture such relationship,
namely HyperLDLf .

Our Contribution

•HyperLDLf : an extension of LDLf incorporating quantifiers over (finite) traces;
• Decidability and complexity of the model-checking problem of HyperLDLf over
sets of regular languages;
• Algorithm based on classical finite automata, avoiding detour to infinite objects
automata.

Syntax

ϕ := ψ | ∃πϕ | ∀πϕ Trace quantifiers
ψ := tt | ff | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈ρ〉ψ | [ρ]ψ Boolean and temporal modalities
ρ := φ | ψ? | ρ + ρ | ρ; ρ | ρ∗ Regular expressions
φ := pπ | ¬pπ | φ ∧ φ | φ ∨ φ Boolean propositions

Classic syntactic sugar:
trueπ .= pπ ∨ ¬pπ propositional true over trace π
falseπ .= ¬trueπ propositional false over trace π
trueP .= ∧

π∈P trueπ propositional true over set of traces P
falseP .= ¬trueP propositional false over set of traces P
Xψ .= 〈truefree(ψ);ψ?〉tt next operator
X̃ψ .= ¬X¬ψ weak next operator
ψ1Uψ2

.= 〈(ψ1?; truefree(ψ2))∗;ψ2?〉tt until operator
Fψ .= truefree(ψ)Uψ eventually operator
Gψ .= ¬F¬ψ globally operator
endπ .= [trueπ]ff trace is ended
lastπ .= 〈trueπ〉endπ last event on the trace

Semantics

E |= ∃πϕ if there is t ∈ E s.t. E , [π → t] |= ϕ
E |= ∀πϕ if, for each t ∈ E , E , [π → t] |= ϕ
Examples:
E |= ∃π〈trueπ; a〉tt
E 6|= ∀π〈trueπ; a〉tt

t1

{a, b} {a} {} {b} {a, b} {a}

t2

{a, b} {b} {b} {a, b} {}

t3

{a, b} {a} {} {b} {a, b} {b} {a}

Examples

1 Security [2]
Noninference ϕNI = ∀π∃π′(Gλπ′) ∧ equalL(π1, π2)

Low level agents cannot infer any information on the high-level trace.
Observational Determinism ∀π∀π′ ∧

p∈Lin pπ ↔ pπ′ → X̃ ∧
p∈Lout pπ ↔ pπ′

The low-level user sees deterministic executions even when the
executing program is nondeterministic.

2 Process Mining [3]
Duty separation ∀π1, π2 (∧

r∈Res(¬F(open_env, r)π1 ∨ ¬F(record_check, r)π2))
Two tasks have to be performed by different resources, within the same
instance or across all process instances.

Events in system logs Given an event log E and a pair of activities a and b
appearing in E , HyperLDLf can represent and verify the basic ordering
relations as defined in [4]:
a >E b E |= ∃π〈(trueπ)∗; aπ; bπ〉tt
a 6>E b E |= ∀π[(trueπ)∗; aπ; bπ]ff
a→E b E |= a >E b ∧ b 6>E a
a#Eb E |= a 6>E b ∧ b 6>E a
a||Eb E |= a >E b ∧ b >E a

3 Instance-Spanning Constraints [5]
Repetition limit ∀π1, . . . , πn+1[(trueP)∗; (∨

i∈{1,...,n+1} aπi; . . . ; (trueP)∗)n+1]ff
Activity a cannot be executed, overall, more than n times.

Activity propagation ∀π1∀π2rel(π1, π2)→ G(aπ1 → XF bπ2)
Whenever an activity a occurs in a trace π, then b has to occur later on
in all traces related to π.

Solution techniques

Automata construction
1 An LDLf formula ψ is transformed into an alternating finite automaton Aψ [6];
2 Traces of the logs are represented by a deterministic finite automaton D;
3 Classic existential and universal projections correspond to the respective
quantifications of a HyperLDLf formula ϕ = Qnπ1 . . . Qnπnψ.

Model checking
Model checking is solved by emptiness of the automaton obtained in the procedure
described above.

Computational analysis
1 The alternating automaton Aψ is of size linear with respect to the size of ψ.
2 Every time the formula requires projecting from a nondeterministic to a universal
automaton or vice-versa, an exponential blow-up in the size is necessary.

AFW

NFW UFW

exp exp

linear
exp

linear
exp

3 The emptiness problem of a NFA is NLOGSPACE and can be done on-the-fly with
the last projection. Without loss of generality, we can assume that the last
projection is existential. Conversely, we solve the model-checking problem of ¬ϕ
and take the opposite answer.

Main Results

Theorem
For a given HyperLDLf formula ϕ with quantifier alternation depth a k and
a set of traces described by a DFA D, checking whether D |= ϕ can be solved
in k−EXPSPACE in both the size of ϕ and D, with 0−EXPSPACE = PSPACE.
a How many times the formula switches from a universal quantification to an existential and vice-versa.

Technique

Manipulates finite automata, avoiding the construction of those over ω-objects.

Publication

[1] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pages 854–860, 2013.

[2] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. Temporal logics for hyperproperties. In
ETAPS 2014, pages 265–284, 2014.

[3] Wil M. P. van der Aalst et al. Process mining manifesto. In Business Process
Management Workshops (1), volume 99 of Lecture Notes in Business
Information Processing, pages 169–194. Springer, 2011.

[4] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Trans. Knowl. Data Eng.,
16(9):1128–1142, 2004.

[5] Walid Fdhila, Manuel Gall, Stefanie Rinderle-Ma, Juergen Mangler, and Conrad
Indiono. Classification and formalization of instance-spanning constraints in
process-driven applications. In BPM, volume 9850 of LNCS, pages 348–364.
Springer, 2016.

[6] Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. Ltlf/ldlf
non-markovian rewards. In AAAI 2018, pages 1771–1778. AAAI Press, 2018.

Acknowledgements

Work supported in part by European Research Council under the European Union’s
Horizon 2020 Programme through the ERC Advanced Grant WhiteMech (No.
834228).

