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Motivation

• The analysis of finite traces is important both in Artificial Intelligence, e.g. automated
planning, and Business Process Management, e.g., process mining.
• LTLf and LDLf are temporal logics widely used for the analysis of dynamic systems with
finite traces [1];
•Often, traces come as logs, that are (possibly infinite) sets of traces, typically generated by
a regular process;
•When analyzing logs, it becomes of interest to understand the relationships among
different traces, i.e., how different traces evolve with respect to one another;
•We propose a formalism based on LTLf/LDLf that is able to capture such relationship,
namely HyperLDLf .

Our Contribution

•HyperLDLf : an extension of LDLf incorporating quantifiers over (finite) traces;
• Decidability and complexity of the model-checking problem of HyperLDLf over
sets of regular languages;
• Algorithm based on classical finite automata, avoiding detour to infinite objects
automata.

Syntax

ϕ := ψ | ∃πϕ | ∀πϕ Trace quantifiers
ψ := tt | ff | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈ρ〉ψ | [ρ]ψ Boolean and temporal modalities
ρ := φ | ψ? | ρ + ρ | ρ; ρ | ρ∗ Regular expressions
φ := pπ | ¬pπ | φ ∧ φ | φ ∨ φ Boolean propositions

Classic syntactic sugar:
trueπ .= pπ ∨ ¬pπ propositional true over trace π
falseπ .= ¬trueπ propositional false over trace π
trueP .= ∧

π∈P trueπ propositional true over set of traces P
falseP .= ¬trueP propositional false over set of traces P
Xψ .= 〈truefree(ψ);ψ?〉tt next operator
X̃ψ .= ¬X¬ψ weak next operator
ψ1Uψ2

.= 〈(ψ1?; truefree(ψ2))∗;ψ2?〉tt until operator
Fψ .= truefree(ψ)Uψ eventually operator
Gψ .= ¬F¬ψ globally operator
endπ .= [trueπ]ff trace is ended
lastπ .= 〈trueπ〉endπ last event on the trace

Semantics

E |= ∃πϕ if there is t ∈ E s.t. E , [π → t] |= ϕ
E |= ∀πϕ if, for each t ∈ E , E , [π → t] |= ϕ
Examples:
E |= ∃π〈trueπ; a〉tt
E 6|= ∀π〈trueπ; a〉tt

t1

{a, b} {a} {} {b} {a, b} {a}

t2

{a, b} {b} {b} {a, b} {}

t3

{a, b} {a} {} {b} {a, b} {b} {a}

Examples

1 Security [2]
Noninference ϕNI = ∀π∃π′(Gλπ′) ∧ equalL(π1, π2)

Low level agents cannot infer any information on the high-level trace.
Observational Determinism ∀π∀π′ ∧

p∈Lin pπ ↔ pπ′ → X̃ ∧
p∈Lout pπ ↔ pπ′

The low-level user sees deterministic executions even when the
executing program is nondeterministic.

2 Process Mining [3]
Duty separation ∀π1, π2 (∧

r∈Res(¬F(open_env, r)π1 ∨ ¬F(record_check, r)π2))
Two tasks have to be performed by different resources, within the same
instance or across all process instances.

Events in system logs Given an event log E and a pair of activities a and b
appearing in E , HyperLDLf can represent and verify the basic ordering
relations as defined in [4]:
a >E b E |= ∃π〈(trueπ)∗; aπ; bπ〉tt
a 6>E b E |= ∀π[(trueπ)∗; aπ; bπ]ff
a→E b E |= a >E b ∧ b 6>E a
a#Eb E |= a 6>E b ∧ b 6>E a
a||Eb E |= a >E b ∧ b >E a

3 Instance-Spanning Constraints [5]
Repetition limit ∀π1, . . . , πn+1[(trueP )∗; (∨

i∈{1,...,n+1} aπi; . . . ; (trueP )∗)n+1]ff
Activity a cannot be executed, overall, more than n times.

Activity propagation ∀π1∀π2rel(π1, π2)→ G(aπ1 → XF bπ2)
Whenever an activity a occurs in a trace π, then b has to occur later on
in all traces related to π.

Solution techniques

Automata construction
1 An LDLf formula ψ is transformed into an alternating finite automaton Aψ [6];
2 Traces of the logs are represented by a deterministic finite automaton D;
3 Classic existential and universal projections correspond to the respective
quantifications of a HyperLDLf formula ϕ = Qnπ1 . . . Qnπnψ.

Model checking
Model checking is solved by emptiness of the automaton obtained in the procedure
described above.

Computational analysis
1 The alternating automaton Aψ is of size linear with respect to the size of ψ.
2 Every time the formula requires projecting from a nondeterministic to a universal
automaton or vice-versa, an exponential blow-up in the size is necessary.
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3 The emptiness problem of a NFA is NLOGSPACE and can be done on-the-fly with
the last projection. Without loss of generality, we can assume that the last
projection is existential. Conversely, we solve the model-checking problem of ¬ϕ
and take the opposite answer.

Main Results

Theorem
For a given HyperLDLf formula ϕ with quantifier alternation depth a k and
a set of traces described by a DFA D, checking whether D |= ϕ can be solved
in k−EXPSPACE in both the size of ϕ and D, with 0−EXPSPACE = PSPACE.
a How many times the formula switches from a universal quantification to an existential and vice-versa.

Technique

Manipulates finite automata, avoiding the construction of those over ω-objects.
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