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Abstract
Recently, the concept of Digital Twin (DT), meant
as a digital replica of a physical asset, emerged
in smart manufacturing applications. Due to the
growth of the Internet-of-Things (IoT), an increas-
ing number of software solutions implementing
DTs appeared. Nevertheless, the potential of DTs
has been only partially explored. In particular, the
current employment of DTs is mainly limited to
simulation, whereas they can be also employed for
enacting and monitoring manufacturing processes.
In this paper, we show how automated planning
can be employed in such a scenario to synthesize a
manufacturing process according to a specific pro-
duction goal and to adapt to failures. We provide a
running implementation based on a commercial DT
platform and a state-of-the planner, and propose a
research outlook towards a more general employ-
ment of such an approach.

1 Introduction
The continuous evolution of digital technologies applied to
the more traditional world of industrial automation led to
smart manufacturing, which envisions production processes
subject to continuous monitoring and able to dynamically re-
spond to changes that can affect the product life cycle at any
stage (resilient factory). In the so-called digital factory, the
involved actors that can fall in different categories, being hu-
mans (i.e., final users or participants in the production pro-
cess), information systems or industrial machines, must be
able to communicate and interact at the digital level while
operating in the physical world. The Industrial Internet-of-
Things (IIoT) represents one of the technological pillars to
this end. By covering the domains of machine-to-machine
(M2M) and industrial communication technologies, IIoT is
the computing concept that enables efficient interaction be-
tween the physical world and its digital counterpart [Sisinni
et al., 2018]. Thanks to IIoT, physical entities can have a
faithful representation in the digital world, usually defined as
digital twins. Digital Twins (DTs) are up-to-date digital de-
scriptions of physical objects and their operating status [Qi et
al., 2019]. Modern information systems and industrial ma-
chines may natively come out with their digital twin; in other

cases, especially when the approach is applied to already es-
tablished factories and production processes, digital twins are
obtained by wrapping actors that are already in place.

DTs are commonly known as a key enabler for the digital
transformation in manufacturing. Nevertheless, their poten-
tial has been only partially explored. In particular, the current
employment of DTs is mainly limited to simulation, whereas
they can be also employed for monitoring and enacting man-
ufacturing processes. In this paper we advocate that is pos-
sible, by leveraging techniques from automated planning, to
automatically orchestrate DTs in order to reach specific pro-
duction goals and respecting expected Key Performance In-
dicators (KPIs) [Catarci et al., 2019], by totally or partially
replacing rules hand-made by human experts. AI planning
has indeed proven its potential in conjunction with differ-
ent kinds of business processes (e.g., emergency management
processes [Marrella et al., 2016]), and could have a huge im-
pact on manufacturing processes in digital factories too, by
allowing automatic recovery and optimization, and even au-
tomatic orchestration of the intermediate steps for achieving
a production goal, thus achieving manufacturing resilience.
Contribution: The availability of DTs, and the possibility to
describe them in terms of their software interfaces via knowl-
edge representation (KR) approaches, opens up to new sce-
narios where DTs are orchestrated automatically in order to
pursue specific goals and perform adaptation to failures in
the production chain. In this paper, we show how a stan-
dard DT description language can be easily extended for DT
orchestration and we present ALTO - AgiLe Twin Orches-
trator, a system prototype that leverages a DT platform and
automated planning to compute and continuously monitor se-
quences of DT actions ensuring to achieve the given produc-
tion goal. The efficiency and scalability of the proposed ap-
proach is proven against a synthetic dataset and a virtual ma-
chine with a running version of our prototype and all the code
used in our experiments is available to the reader 1.

This paper represents a first step towards a more general
employment of this approach. Describing software interfaces
of complex machines may require the employment of ad-
vanced KR approaches to be matched with planning tech-
niques complexity, which in turn influences efficiency and

1See https://drive.google.com/drive/folders/
1gKiSIKFQz3NKRHCWLUcU5b3XHoLGBt2h?usp=sharing

https://drive.google.com/drive/folders/1gKiSIKFQz3NKRHCWLUcU5b3XHoLGBt2h?usp=sharing
https://drive.google.com/drive/folders/1gKiSIKFQz3NKRHCWLUcU5b3XHoLGBt2h?usp=sharing


scalability. As a consequence, our aim is also to outline a
research outlook for the involved AI research communities.
Outline. Section 2 presents an overview of DTs in the recent
literature. Section 3 describes the architecture of the system
prototype ALTO. Performances are discussed in Section 4.
Finally, Section 5 concludes the paper with overall consider-
ations and a possible research outlook.

2 Digital Twins in Smart Manufacturing
Digital Twins, DTs, are today among the most promising
technologies for smart manufacturing and Industry 4.0. Even
though there is no common understanding concerning this
term, different digital twin definitions agree on features such
as (i) connectivity, i.e., the ability to communicate with other
entities and DTs, (ii) autonomy, i.e., the possibility for the
DT to live independently from other entities, (iii) homogene-
ity, i.e., the capability, strictly connected to the autonomy, that
allows to use the same DT regardless of the specific produc-
tion environment, (iv) easiness of customization, i.e., the pos-
sibility to modify the behavior of a physical entity by using
the functionalities exposed by its DT, and (v) traceability, i.e.,
the fact that a DT leaves traces of the activity of the physical
entity.

We review recent literature based on four research ques-
tions: (R1) What are the opportunities and challenges for In-
dustrial IoT? (R2) What are the modelling efforts towards DT
interoperability? (R3) What are the DT-based architectural
paradigms for smart manufacturing? (R4) What are the avail-
able software solutions?
(R1) Industrial IoT and DTs. The IoT paradigm has
made its way into the industry marketplace. The recent pa-
per [Sisinni et al., 2018] clarifies the related concepts of IoT,
Industrial IoT, and Industry 4.0, highlighting challenges in
energy efficiency, interoperability, security, privacy and real-
time performance. The paper [Tao et al., 2018b] focuses on
the review of DT applications in industry, including produc-
tion, health management and product design, outlines current
challenges and future work. The authors of [Tao et al., 2019]
provides a review of DTs in Industrial IoT from a different
perspective, focusing on their origin, engineering practices
and development. The work in [Qi et al., 2019] summarizes
the current state of the art of technologies enabling DTs to
mirror the different facets of industrial processes and prod-
ucts. Finally, the paper [Kamath et al., 2020] explores re-
sults and limitations of current open-source IoT platforms
to achieve DT functionalities, such as virtual representation,
real-time data acquisition and analytics.
(R2) Models for DTs. Authors in [Ameri and Sabbagh,
2016] describe the Manufacturing Service Description Lan-
guage (MSDL), that is, a descriptive ontology for repre-
senting capabilities of manufactures with a service-oriented
paradigm. MSDL decomposes the manufacturing capabili-
ties into different levels of abstraction (e.g., supplier-level,
machine-level and process-level) and enables automated sup-
plier discovery in distributed environments. The work of [Tao
and Zhang, 2017] provides a conceptual model and specific
operation mechanisms for a DT shop-floor, that is, a basic

unit of manufacturing, where data from both physical and vir-
tual sides as well as the fused data are provided to drive all
the steps of the production process. The work in [Schroeder
et al., 2016] and the more recent [Bao et al., 2018] propose
the usage of the popular Automation Markup Language (Au-
tomationML) to model DT’s physical and logical components
with an object-oriented paradigm, and discuss its application
towards the data exchange. Finally, authors in [Zehnder and
Riemer, 2018] introduce a semantic representation for indus-
trial data streams in DTs and the authors of [Tao et al., 2018a]
discuss more in general how to generate and use converged
DT data to drive product design and manufacturing. For our
solution, we will not enforce any specific modeling language,
relying on the very generic description language provided by
the Bosch IoT Things platform.

(R3) DT-based architectures. The group around Reference
Architecture Model Industry 4.0 – RAMI – developed a first
implementation of the DT, the open Asset Administrative
Shell, and a conceptual architecture [Hankel and Rexroth,
2015]. RAMI is a three dimensional reference architectural
framework leveraging EU guidelines and explicitly defined
as a Service Oriented Architecture (SOA), in order to realize
composition and interoperability for adaptable applications.
More recently, authors in [Weber et al., 2017] provide an
overview of Industry 4.0 features in multiple reference ar-
chitectures and develops a maturity model for software ar-
chitectures for data-driven manufacturing. Authors in [Wang
and Wang, 2018] introduce a SOA architecture for the waste
electrical and electronic equipment recovery in which both
the electronic device and its DT are considered as the ser-
vices. Finally, authors in [Brosinsky et al., 2018] introduce
the concept of a DT-based control center architecture based
on a dynamic simulation engine and [Bicocchi et al., 2019]
propose a methodology to coordinate the actors of a smart
factory based on Business Process Management.

(R4) DT platforms. There is a wide variety of software so-
lutions for implementing DTs. We consider three represen-
tative solutions among those offering cooperation function-
alities between twins: Azure Digital Twins, Eclipse Ditto
and Bosch IoT Things. Azure Digital Twins creates models
of physical environments with the notion of spatial intelli-
gence graphs. Spatial intelligence graphs use different ob-
ject models to describe domain-specific concepts including
Spaces (i.e., virtual or physical locations), Devices, Sensors
and space-occupant Users to send signals to devices. Spa-
tial intelligence graph can be managed via REST APIs. In
Eclipse Ditto, each DT is represented as a Thing entity with
a simple JSON-based description language. Features of such
Thing can either represent states and properties or DT func-
tionalities. Physical devices can update their corresponding
Thing entity by sending commands. If a command is suc-
cessful, the Thing entity changes, and an event is generated.
Applications can request operations to devices by the mean
of messages. Eclipse Ditto provides a REST-like HTTP API
to manage DTs and communicate with their real-world coun-
terparts, a built-in search engine to find Things and a pol-
icy system to configure fine-grained access control. Bosch
IoT Things is a cloud DT platform based on Eclipse Ditto.



Figure 1: The architecture of ALTO.

The main differences with Ditto are: built-in integration with
Eclipse IoT projects such as Eclipse Hono and Eclipse hawk-
Bit; the possibility to add functionalities of other services of
the Bosch IoT suite (e.g., Bosch IoT Permissions); and built-
in cloud platforms functionalities (e.g., security).

3 ALTO Architectural Framework
In this paper, we propose a resilient and scalable approach for
the agile orchestration of DTs aimed at achiving a produc-
tion goal and to adapt to failures. To this end, we introduce
the architectural framework of ALTO (AgiLe Twin Orches-
trator). ALTO relies on Bosh IoT as reference DT platform
and leverages a state-of-the-art planning method to compute
a sequence of DT actions leading to the goal. Actions are dis-
patched to the DTs through Bosh IoT and are executed by the
physical devices while the production process is monitored to
detect failures and possibly generate recovery plans.

Example 1 (“MyFactory”) Let us introduce a simple exam-
ple that will be used in the rest of the paper to illustrate our
approach. Consider a smart factory with three manufactur-
ing devices, dubbed a 3D printer, a laser cutter and an as-
sembler, each associated to a DT. The basic production goal
of MyFactory is to “manufacture a single product and place it
in the specific storage location”. The resilient plan will cor-
respond to a main production plan where products are man-
ufactured via 3D-printing, and – in case of printer failure –
a recovery plan where products are manufactured by cutting
and assembling two pieces (“typeA” and “typeB”).

ALTO main components are depicted in Figure 1. Be-
sides (i) the DT platform to wrap and mediate the available
IoT manufacturing devices and (ii) the planner to generate
the plan and adapt to faulty instances, the other components
are (iii) an orchestrator to enact plans and possibly managing
exceptions, (iv) a translator to enable automatic interaction
between the DT platform and the planner via the orchestra-
tor. Devices can be connected to the DT platform through
MQTT (Message Queue Telemetry Transport), a lightweight
messaging protocol for the IoT supported by many DT plat-
forms. The orchestrator can interact with the DT platform
through a WebSocket API, which allows to receive change
notifications.

In order to leverage existing planning systems, the core
component of ALTO is the translator that converts the DTs’
descriptions and the context, i.e. the production goal and the

current production environment that is usually monitored by
sensors, into a planning problem stored in the Planning Do-
main Definition Language (PDDL) domain and problem files.

A planning problem [Ghallab et al., 2016] (A, I, γ,O)
consists of a set of state variables A, a description (i.e., a
valuation over A) of the initial state of the system I , a goal
γ represented as a formula over A, and a list of operation
(or, actions) O over A that can lead to state transition. States
variables A and action O constitute the planning domain of
the planning problem. An automated planner aims at find-
ing automatically a sequence of operations that, applied to
the initial state I , leads to a state s such that s |= γ. In
this framework, an operation o ∈ O is defined as a tuple
o = 〈χ, e〉 where χ is the precondition and e is the effect,
both expressed as conjunctions of literals (positive or negated
atomic sentences) over A. χ defines the states in which o can
be executed, whereas e defines the result of executing o. For
each effect e and state s, the change set [es] is a set of state
variables whose value is modified upon the operation. The
successor state of s with respect to the action o is the state s′
with s′ |= [es] and s′(v) = s(v) for all state variables v not
mentioned in [es].

The Planning Domain Definition Language (PDDL) [Fox
and Long, 2003] is a standard language to describe planning
domains and problems. Each planner supports specific fea-
tures of the different versions of PDDL. The current prototype
of ALTO is based on the FastDownward planner [Helmert,
2006], which supports PDDL 2.2 level 1. Currently, we only
employ deterministic features of PDDL.
Input. The actual input to the ALTO prototype are a context
file expressed in PDDL and a set of Bosh IoT DT descrip-
tions. Considering our example, the context file contains a
conjunction of PDDL atoms that expresses the basic produc-
tion goal and that must be true at the end of the process.

Each DT in Bosch IoT Things is represented as a Thing en-
tity and described in JSON format. Figure 3 shows a possible
description of the 3D printer in our MyFactory example. The
different aspects of the DT are represented as attributes (lines
3-4) and features (lines 5-31). Features can either represent
a state with properties (e.g., status) or a functionality of a
DT (e.g., printing), while attributes (e.g., type) hold val-
ues that do not change, or that change less frequently than the
Features property values.

We assume the context file to be static. Values of state
fields in the DT descriptions, instead, may vary over time
(e.g., at in line 23 of Figure 3) and are therefore monitored
during the production process.
Workflow. The main steps of the ALTO workflow are below.

(1) The orchestrator retrieves the DT descriptions from the
DT platform and feeds them to the translator which takes in
input the context file and generates the PDDL files for the
planning domain and problem.

(2) The orchestrator gets the domain and problem files and
submits them to the planner. Upon planning completion, the
orchestrator gets the resulting plan file for downstream execu-
tion. Figure 2a shows a sample of such a file for MyFactory.
Note that this plan, i.e., the main plan, uses the 3D printer, as
it is the cheapest way to achieve the production goal.



1(print pr p pos32)
2(move forklift p pos32 pos33)

(a) Main plan

1(move forklift ta pos11 pos21)
2(move forklift tb pos11 pos21)
3(cut laser ta pos21)
4(move forklift ta pos21 pos23)
5(cut laser tb pos32)
6(move forklift tb pos21 pos23)
7(assemble assembler ta tb p pos23)
8(move forklift p pos23 pos33)

(b) Recovery plan

Figure 2: Plans in the MyFactory example

(3) The orchestrator sends the sequence of actions in the
plan to the corresponding DTs for execution, one by one,
via the API of the DT platform. For example, the action
(move forklift p pos32 pos33) becomes a message in
Bosch IoT Things with subject move, the ID of its recipient is
forklift, while pos32 and pos33 form the message body.
Between an action and the next one, the orchestrator checks
the state fields of the involved DTs in order to verify that the
output is equal to the expected one. Let us assume, for in-
stance, that operation (1) of the main plan times out. Then the
orchestrator will set the DT status of the 3D printer (line 29
in Figure 3) to broken, update the problem and domain files
and ask the planner to generate a recovery plan that starting
from the current state of the system can lead to the production
goal. Figure 2b shows an example of recovery plan, involving
the cutter and the assembler in place of the 3D printer.
Extending the DT description language. In order to en-
able automatic translation of DT descriptions to PDDL, we
introduce an extension of the description language of the DT
platform. Such an extension allows indeed the identification
of the features that constitute the planning domain, i.e., the
set of state variables and actions. Field type is added to the
feature properties of a DT to this end: for instance, type:
state at line 25 of Figure 3 denotes that the feature at de-
scribed in lines 23-28 (i.e., the device location) is a state vari-
able; whereas type: operation at line 8 denotes that the
feature printing described in lines 6-22 (i.e., the printing
operation of the 3D printer) is an action.

State variables describe the properties of the physical de-
vice that are gathered from the sensor data and can evolve
over time. The JSON object value (e.g., line 26) describes
the state variable current value and value type.

Actions represent the operations that the device is able to
perform in the planning domain. The field command (e.g.
print in line 9) stores the operation name, required by the
DT platform to invoke it. Actions are expressed in terms of
parameters, preconditions and effects.

• the field parameters represents the typed variables that
must be given as input: in our example, one parameter of
type product and another of type position, represent-
ing the target position x of the product p to be printed;

• the field requirements represents the preconditions

1{"thing":{
2"thingId":"com.myThings:pr",
3"attributes":{
4"type":"printer"},
5"features":{
6"printing":{
7"properties":{
8"type":"operation",
9"command":"print",
10"cost":1,
11"parameters":[
12"product - p",
13"position - x"],
14"requirements":{
15"positive":[
16"at:x"],
17"negative":[
18"p.processed"] },
19"effects":{
20"added":[
21"p.processed",
22"p.at:x"] } } },
23"at":{
24"properties":{
25"type":"state",
26"value":{
27"type":"position",
28"current":"pos32" } } },
29"status":{
30"properties":{
31"value":"free" } } } } }

Figure 3: Sample JSON decription of a DT.

that must be true (cf. positive) and the states that must
be false (cf. negative) for the operation to be applica-
ble. For instance, the requirements at lines 14-18 state
that the product must not be already processed and the
printer’s position needs to be x;

• the object effects stores the lists of states that will be
set to true (cf. added) and the states that will be set to
false (cf. deleted) after the operation execution, pro-
vided that the operation terminates successfully;

In addition, actions have a field cost (line 10).
Finally, as mentioned, each DT has a status feature,

which is used by the orchestrator for monitoring purposes.
Its value can be either free, if the device is waiting for com-
mands, busy, if the device is performing a task, or broken,
if the device is in an error state and needs intervention.
Result of translation. The translator component of ALTO
transforms the DT descriptions and the context file into (i) a
PDDL domain file containing types, predicates and actions
and (ii) a PDDL problem file containing the objects, initial
states and the goal. The translation result is detailed below.

Types encode the objects in the working environment and
the IoT devices and are organized in inheritance hierarchies.
Specifically, for the purpose of DT specification, we intro-
duce types service for DT objects and capability for the
operations they provide. In our example, the PDDL domain
file contains the following object types:

1(:types
2position
3typeA typeB - piece
4piece product - movable
5printer cutter assembler - service
6printing cutting assembling - capability
7movable service - object)



Each line specifies type names and type-subtype relation-
ships. For instance piece and product are subtypes of
the movable type (i.e., all those objects that may be moved
around the factory), which in turn belongs to object.

Predicates apply to specific types of objects or to all objects
and are either true or false at any point in the plan. In our
example, the PDDL domain file contains the following ones:

1(:predicates (at ?o - object ?p - position)
2(cut ?p - piece)
3(processed ?p - product))

For instance, predicate at takes two arguments, the first one
of type object and the second of type position.

Actions correspond to the operations offered by the avail-
able DTs. In our example, DTs provide four actions: move,
print, cut and assemble. For instance, operation print in
Figure 3 translates to the following PDDL fragment:

1(:action PRINT
2:parameters (?srv - service
3?p - product
4?x - position)
5:precondition (and (provides ?srv printing)
6(not(processed ?p))
7(at ?srv ?x))
8:effect (and (processed ?p)
9(at ?p ?x)))

Objects constitute the possible arguments to the predicates
in the problem instance. They are obtained from both the
context file and DT descriptions. In particular, each Thing
becomes an object of type service and each feature an ob-
ject of type capability. An excerpt of this section follows:

1(:objects
2p - product
3ta - typeA
4pr - printer
5printing - capability
6pos11 pos12 pos13 pos21 pos22 ... - position
7...)

The data that contributes to the initial state are collected
from the features of type state of the DTs and the context
file. With reference to Figure 3, the printer pr contains a state
named at. Therefore, the initial state contains the following
grounded predicate:

1(at pr pos11)

In addition, the fact that the printer pr contains the operation
printing leads to the inclusion of the following grounded
predicate in the initial state:

1(provides pr printing)

In our example, the PDDL problem file contains the fol-
lowing goal that requires the production of product “p” and
its storing in position “pos33”:

1(:goal (and (processed p)(at p pos33))

4 Performance Assessment
We now provide empirical results about the scalability of our
approach and demonstrate that plans can be generated in rea-
sonable time (e.g., few minutes) for up to 100 DT operations
in the platform. As frame of comparison, our experience sug-
gests that typical scenarios involve few dozens of operations

available in the smart factory, possibly due to the presence
of many simple DTs (i.e., with few operations each) or few
complex ones (i.e., with many operations each). The total
amount of time spent to perform the entire process is made
up of three components: (i) the time spent by the devices to
perform the assigned tasks, (ii) the communication time and
(iii) the time dedicated to planning. Typical tasks in a manu-
facturing chain are usually estimated in the order of minutes
(e.g., a 3D printer takes several minutes in order to produce
an output). The time spent to exchange messages for any
single operation is usually far below one second. In order
to show the overhead introduced by planning, we randomly
generate different PDDL domains/problems and measure the
corresponding planning time as described below.

Domain generation. We consider different amounts n =
10, 20, . . . 100 of available DT operations and generate a cor-
responding random directed graph with n nodes, where every
node represents a DT operation and every edge (u, v) repre-
sents that the effect of the operation u is a preconditions of
the operation v. More specifically, let p an input probability
value, the graph generation consists of the main steps below.

1. We sort the nodes in decreasing order of their de-
fault identifier (e.g., in lexicographic order). Let
u0, u1, . . . , un−1 the resulting sorted list.

2. For every node ui, we add the edge (ui, ui+1) with prob-
ability p. Then, if (ui, ui+1) is inserted, we add the edge
(ui, ui+2) with probability p/2. Otherwise we add the
edge (ui, ui+2) with probability p, and so on.

By construction the graph (i) is acyclic; (ii) it has at least
one source node with no in-going edges (i.e., u0) (iii) it has
at least one sink node with no out-going edges (i.e., un−1).
Source nodes represent operations with no preconditions, e.g.
raw material provision. The resulting graph is finally trans-
lated into a PDDL domain and problem as follows.

• Each node becomes an action with no parameters. The
name of such action is processL, where L is the node
identifier. The effect consists of only one predicate,
processedL. The precondition is a conjunction over the
effects of the predecessors of node L (if there are no pre-
decessors, the precondition is empty), e.g., if node L has
two predecessors, node P and node Q, the precondition
becomes and(processedP )(processedQ);

• For each sink node u we add the predicate processedL
(where L is the identifier of u) to the goal clause.

Finally, we set the initial state of the PDDL problem as empty
and check if a planning solution exists, otherwise we discard
the graph. We note here that a PDDL domain built using this
strategy is definitely more complex than a typical manufac-
turing scenario, as operations are much more interconnected
than in the reality. Thus, obtained performance results repre-
sent an upper bound for those in real world cases.

Results. Figure 4 shows planning time in the first and in two
different scenarios, for increasing values of n and two values
of p, dubbed p = 0.25 and p = 0.50. For every n we repeat
the process 50 times, every time generating a new graph. In
the first scenario, we measure the time for the optimal planner
to compute the main plan. In the second scenario, in order
to simulate the malfunctioning of a device, we eliminate a
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(a) scenario 1, p = 0.25
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(b) scenario 2, p = 0.25
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(c) scenario 1, p = 0.50

10 20 30 40 50 60 70 80 90 100
Number of nodes

10 3

10 2

10 1

100

101

102

103

T
im

e
 (

s)

(d) scenario 2, p = 0.50

Figure 4: Planning times for random factory domains. Y-axes are in log scale. The horizontal line corresponds to 1 second.

random node and its associated edges from the current graph,
and measure the time for computing the recovery plan. For
each n, the box shows the lower and upper quartile values,
with a line at the median. The whiskers and the outlier points
show the complete range of the data.

We first observe that planning is known to require worst
case exponential time in the input size, and thus as n increases
the maximum time grows rapidly. However, most of the in-
stances can be processed successfully in less than 10 seconds
(which is a negligible time in the context of production pro-
cesses) and almost all instances require less than 3 minutes.
We also note that re-planning can take more time, as recovery
plans can be longer than main plans, but on average our two
scenarios run in comparable times. Of course, multiple fail-
ures and consequent recovery plans could occur during the
process. However, in real-world applications failures are in-
frequent and there is typically time to fix broken machines
between one failure and another, so that they become avail-
able again for future re-planning.

5 Research Outlook
In this paper, we have proposed a technique, based on auto-
mated planning, to be applied in smart manufacturing scenar-
ios that, given a set of descriptions of available digital twins
in terms of available actions, preconditions and effects, pro-
vides a sequence of actions suitable to pursue a production
goal and, in case failures are observed, finds a recovery plan.
We have shown how such an approach can be realized and
how observed performances are suitable with respect to typi-
cal manufacturing chain sizes.
Limitations. The proposed approach represents a first step
towards a more general application of AI planning to smart
manufacturing. As such, it suffers of the some limitations:

1. Preconditions and effects of DT actions only contain
logical conjunctions of boolean predicates;

2. Different DTs share a common vocabulary, s.t., for in-
stance, the same predicate is denoted by the same name
in all the DTs in the platform;

3. Planning takes into account neither non-determinism nor
probabilities in the execution of DT actions, thus result-
ing in potentially non-optimal or risky plans.

Research outlook. The first limitation can be addressed by
applying optimization techniques, such as discretization and
grounding, in order to handle complex task preconditions and
effects without compromising performances. Discretization

is a powerful tool to support non boolean properties, such as
data coming from sensor measurements. A reader might note
that this technique has been already applied in our example
for handling positions, and in future we plan to leverage ad-
vanced discretizazion strategies to handle also more complex
physical measures. Grounding [Gnad et al., 2019] is instead
a common approach in planning to reduce the state space,
thus improving solution search performance. State-of-the-art
planners already transparently implement grounding, but we
plan to make an explicit use of it in the planning domain in
order to cope with data integration issues.

The second limitation can be addressed instead by apply-
ing data integration techniques [Lenzerini, 2002; Bernstein et
al., 2011], such as schema matching, for handling vocabulary
ambiguities, such as different names for the same predicate
or measurement units conversion.

Both the first and the second limitations can be addressed
at the translator level in Figure 1, in order to avoid PDDL
features requiring the employment of less efficient planners,
which would compromise the application of the proposed ap-
proach in a realtime scenario such as smart manufacturing.

Concerning the third limitation, addressing uncertainty in
planning is a known task [Blythe, 1999]. Researchers must
anyway find a trade-off between the expressive power of plan-
ning languages and the complexity required to machinery
manufacturers in order to describe DTs. In such a scenario,
approaches such as the one proposed in [Ciolek et al., 2020]
could be helpful to bridge the gap between the planning re-
search community and manufacturers.

Another important research direction is represented by the
integration of experimentable DTs, i.e., DTs equipped with
prediction (or, what-if ) functionalities. This would allow, for
example, to promote production plans with greater likelihood
of success. Additionally, even though the paper presents only
examples involving a single factory, the approach can be ex-
tended to a more general setting where different companies
are involved in different stages of the product life cycle. In
this case, prediction capabilities of DTs and providing dif-
ferent solutions, for example, for mass- and custom- produc-
tions, assume a prominent role.

Finally, as decision taken by AI components can be poten-
tially harmful, the proposed approach should be integrated in
a human-in-the-loop approach, where knowledge and feed-
backs from human experts are employed to improve auto-
matic decisions.
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