
Best-Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up

Benjamin Aminof1 , Giuseppe De Giacomo2 , Sasha Rubin3

1TU Vienna, Austria
2University of Rome “La Sapienza”, Italy

3University of Sydney, Australia
aminof@forsyte.at, degiacomo@diag.uniroma1.it, sasha.rubin@sydney.edu.au

Abstract
We study best-effort synthesis under environment
assumptions specified in LTL, and show that this
problem has exactly the same computational com-
plexity of standard LTL synthesis: 2-EXPTIME
complete. We provide optimal algorithms for com-
puting best-effort strategies, both in the case of LTL
over infinite traces and LTL over finite traces (i.e.,
LTLf). The latter are particularly well suited for
implementation.

1 Introduction
We study best-effort synthesis under environment assump-
tions in Linear-time Temporal Logic (LTL), the most used
logic for dynamic system specifications in Verification [Baier
et al., 2008]. Given an LTL specification of the possible be-
haviors of the environment (i.e., an assumption on the strate-
gies that the environment can enact), and an LTL specifica-
tion of the task (or goal) for the agent acting in such envi-
ronments, our aim is to synthesize a strategy for the agent
[Church, 1963; Pnueli and Rosner, 1989; Finkbeiner, 2016]
that accomplishes the task against all the relevant strategies
of the environment [D’Ippolito et al., 2018; De Giacomo and
Rubin, 2018; Camacho et al., 2018; Aminof et al., 2019].

What do synthesis procedures return when the agent can-
not always achieve its task even by exploiting the assump-
tion on the environment? Typically, the algorithms “give up”
declaring the task un-realizable. Here, instead, we synthesize
a strategy ensuring that the agent will do nothing that would
needlessly prevent it from achieving its task — which we call
a best-effort strategy. The importance of such strategies is
clear if the environment is not purely adversarial. This hap-
pens, e.g., when the assumptions over-approximate the en-
vironment (i.e., include environment strategies that are not
possible in reality) or when environments are agnostic to the
agent. See, e.g., [Faella, 2009; Bloem et al., 2014].

Observe that quantitative approaches based on optimiza-
tion, such as MDPs, also always return strategies (or mem-
oryless policies, in case of MDPs), that are in a sense “opti-
mal”, e.g., wrt expected rewards [Bertsekas, 2005]. Here, we
focus on synthesis purely from logical specifications. We do
not have external information about the probabilities of cer-
tain environment reactions, nor of utilities of taking certain

actions. We do however have a logical specification which
qualitatively defines the possible environment behaviors.

The main result of this paper is that best-effort synthesis
under environment assumptions has exactly the same compu-
tational complexity as standard synthesis: 2-EXPTIME com-
plete. Hence, “doing your best is not harder than giving up”!
While it was already known that best-effort synthesis un-
der environment assumptions was decidable [Aminof et al.,
2020], its complexity appeared to be much higher than stan-
dard synthesis: e.g., if one was to express this problem natu-
rally in Strategy Logic [Mogavero et al., 2014], one would get
a 4-EXPTIME upper-bound. Our algorithm employs a novel
technique based on simultaneously playing multiple games
with different objectives on the same arena. Then, by com-
bining the different winning strategies, we get the desired
best-effort strategy. We apply this technique to LTL speci-
fications on infinite traces, as well as to LTLf specifications
on finite traces [De Giacomo and Vardi, 2013; 2015]. The
latter is particularly well suited for implementation, since it
is based on manipulation of finite automata, for which a key
step, determinization, while exponential in the worst case
is often polynomial in practice [Tabakov and Vardi, 2005;
Zhu et al., 2017; 2020; Tabajara and Vardi, 2020].

Interestingly, best-effort synthesis under environment as-
sumptions separates the traditional trace-based approach to
synthesis [Pnueli and Rosner, 1989; Bloem et al., 2014],
and the strategy-based approach [Mogavero et al., 2014;
Kupferman et al., 2001; Aminof et al., 2019; 2020]. We dis-
cuss this point further in Section 6.

2 Synthesis under Environment Assumptions
Linear-time Temporal Logic (LTL). Given a finite setAP
of atomic propositions, formulas of LTL over AP are defined
by the following BNF (where p ∈ AP):

ϕ ::=p |ϕ ∨ ϕ |¬ϕ |Xϕ |ϕUϕ

We use the usual abbreviations, ϕ ⊃ ϕ′
.
= ¬ϕ ∨ ϕ′, true .

=
p ∨ ¬p, Fϕ .

= trueUϕ, Gϕ .
= ¬F¬ϕ. The size |ϕ| of

a formula ϕ is the number of symbols in it. A trace τ is an
infinite sequence of valuations of the atoms, i.e., τ ∈ (2AP)ω .
For n ≥ 0, write τn for the valuation at position n. A history
h is a finite prefix of a trace. Given a trace τ , an integer n,
and an LTL formula ϕ, the satisfaction relation (τ, n) |= ϕ,

stating that ϕ holds at step n of the sequence τ , is defined as
follows:

• (τ, n) |= p iff p ∈ τn;
• (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2;
• (τ, n) |= ¬ϕ iff (τ, n) |= ϕ does not hold;
• (τ, n) |= Xϕ iff (τ, n+ 1) |= ϕ; and
• (τ, n) |= ϕ1 Uϕ2 iff there exists m ≥ n such that:

(τ,m) |= ϕ2 and (τ, j) |= ϕ1 for all n ≤ j < m.
We write τ |= ϕ if (τ, 0) |= ϕ and say that τ satisfies ϕ and
that τ is a model of ϕ.
Reactive Synthesis. (Reactive) synthesis concerns con-
structing the behaviors of an agent that achieve a given goal
(aka task) while interacting with its environment. We specify
goals as well as environment assumptions by LTL formulas.
Formally, let X and Y be disjoint finite sets of Boolean vari-
ables, called the environment variables and agent variables
respectively, and let AP .

= X ∪ Y . A trace is then written as
(X0 ∪ Y0)(X1 ∪ Y1) . . . where Xi ⊆ X,Yi ⊆ Y for all i.

An agent strategy is a function σag : (2X)+ → 2Y that
maps a non-empty environment history to the next valuation
of the agent variables. Similarly, an environment strategy is
a function σenv : (2Y)∗ → 2X mapping agent histories to
the next valuation of the environment variables. Note that
the domain of σenv includes the empty sequence λ since the
environment makes the first move. A trace (Xi ∪ Yi)i is σag-
consistent if σag(X0X1 · · ·Xj) = Yj for every j ≥ 0; and
is σenv-consistent if σenv(λ) = X0 and σenv(Y0Y1 · · ·Yj) =
Xj+1 for every j ≥ 0. We write PLAY(σag, σenv) for the
unique trace consistent with both strategies.

Let ϕ be an LTL formula over X ∪ Y . An agent strategy
σag enforces ϕ, written σag B ϕ, if PLAY(σag, σenv) |= ϕ for
every environment strategy σenv. In this case we say that ϕ
is agent enforceable. Environment enforceability is defined
similarly: σenv B ϕ if ∀σag. PLAY(σag, σenv) |= ϕ. The syn-
thesis problem is, given an LTL formula ϕ, find (if there is
one) an agent strategy σ that enforces ϕ.
Theorem 1. [Pnueli and Rosner, 1989] The LTL synthesis
problem is 2-EXPTIME complete.
Reactive Synthesis under Environment Assumptions In
most AI scenarios the agent has some knowledge of how the
environment works, which it can exploit in order to enforce
the goal. We specify this knowledge by an LTL formula E .
Following [Aminof et al., 2018; 2019], we view E as speci-
fying the set of environment strategies that enforce it. More-
over, for it to be useful, we require this set to be nonempty,
i.e., that E is environment-enforceable. In this case, we call E
an environment assumption.

There is a weaker way to interpret LTL environment specifi-
cations (cf. [Bloem et al., 2014]), i.e., E directly restricts the
traces (instead of the strategies) of interest to the ones that
satisfy E . In that case, synthesis amounts to devising a strat-
egy of the agent that enforces the implication E ⊃ ϕ. While
these two ways of interpreting environment specifications are
distinct, their synthesis problems are inter-reducible [Aminof
et al., 2019]. Although we will exploit this fact in our al-
gorithms, the trace-based approach falls short when dealing

with the more general problem of best-effort synthesis under
environment assumptions. We discuss this in Section 6.

Given an LTL formula ϕ and an LTL environment assump-
tion E , the synthesis under environment assumptions prob-
lem [Aminof et al., 2019] is to find (if there is one) a strategy
σag such that:

∀σenv B E . PLAY(σag, σenv) |= ϕ

Such a strategy is said to enforce ϕ under E . Reactive syn-
thesis is the special case taking E = true. Furthermore, it
can be shown that most forms of planning with LTL goals,
including on nondeterministic domains, are special cases of
this synthesis problem [Aminof et al., 2019].

Theorem 2. [Aminof et al., 2019] Solving LTL synthesis un-
der environment assumptions is 2-EXPTIME complete.

3 Best-effort Strategies
To formalize the notion of best-effort strategies, we first recall
what it means for an agent strategy to be better than another.
Let E be an environment assumption, and let ϕ be an agent
goal. Define a binary relation ≥ϕ|E on agent strategies:

Definition 1 (Dominance). σ1 ≥ϕ|E σ2 iff for every σenv B
E , PLAY(σ2, σenv) |= ϕ implies PLAY(σ1, σenv) |= ϕ.

This notion can be defined also when there is no assump-
tion involved, by simply taking E = true. As usual, write
σ1 >ϕ|E σ2 iff σ1 ≥ϕ|E σ2 and σ2 �ϕ|E σ1. If σ1 >ϕ|E σ2
we say that σ1 strictly dominates σ2 (for goal ϕ under envi-
ronment assumption E). The relation ≥ϕ|E is a preorder, and
>ϕ|E is a strict partial order.

Intuitively, σ1 >ϕ|E σ2 means that σ1 does at least as well
as σ2 against every environment strategy enforcing E , and
strictly better against at least one such strategy. In particular,
if σ2 is not maximal, say σ1 strictly dominates it, then an
agent that uses σ2 is not doing its “best” to achieve the goal:
if it used σ1 instead, it could achieve the goal against a strictly
larger set of environment strategies. Within this framework,
maximal strategies do a “best-effort” to achieve the goal.

Remark 1. Enforcing strategies dominate all others. In par-
ticular, ϕ is agent-enforceable under E iff every maximal
strategy wrt ≥ϕ|E enforces ϕ under E .

Definition 2 (Best-effort). An agent strategy σ2 is maximal,
or best-effort, for the goal ϕ under the environment assump-
tion E , iff there is no agent strategy σ1 such that σ1 >ϕ|E σ2.

When there is no environment assumption, i.e., E = true,
we simply say that σ2 is best-effort for the goal ϕ. The prob-
lem of best-effort synthesis under assumption is:

Definition 3. Given an LTL goal ϕ and an LTL environment
assumption E , the best-effort synthesis problem under envi-
ronment assumptions is to find an agent strategy that is best-
effort for ϕ under E .

Example 1. Suppose X = {r}, Y = {g}, and ϕ = G(r ⊃
F(g∧¬X r)) and E = (¬r∧X r∧XX r) ⊃ XXX r. We think
of the environment as issuing “requests” (r) and the agent as
issuing “grants” (g). A best-effort strategy for ϕ under E has

no obligation to do anything against a strategy that has pro-
duced the sequence ¬r, r, r,¬r (and thus violated E). A strat-
egy σ is best-effort iff, if such a sequence was not produced
so far, then the strategy ensures that (i) every request is fol-
lowed at some point in time by a grant, and (ii) there is no
grant immediately following the sequence ¬r, r, r.

The realizability problem, i.e., deciding if such agent
strategies exist, is trivial since they always exist:
Theorem 3. [Berwanger, 2007; Aminof et al., 2020] Given
an LTL goal ϕ and an LTL environment assumption E , there is
an agent strategy that is best-effort for the goal ϕ under E .

The main problem addressed in this work is to establish the
exact complexity and algorithms for finding such strategies.

We end with a remark regarding environment assumptions
in the context of best-effort synthesis. Consider two agent
strategies σ1

ag and σ2
ag, and two environment strategies σ1

env

and σ2
env, such that PLAY(σiag, σ

j
env) |= ϕ iff i = j. Observe

that σ1
ag and σ2

ag are incomparable in the dominance order.
Intuitively, lacking information regarding the relative impor-
tance of σ1

env and σ2
env, we have no way to rank σ1

ag and σ2
ag.

Environment assumptions are one way of providing such in-
formation: in case only one of σ1

env and σ2
env enforces the

assumption, the choice between σ1
ag and σ2

ag becomes clear.

4 Solving Games on Automata
In section 5 we give a 2-EXPTIME algorithm for finding best-
effort strategies under environment assumptions. The build-
ing blocks for this algorithm are games played on automata.
Deterministic Transition Systems. A deterministic transi-
tion system D = (Σ, Q, ι, δ) consists of a finite input alpha-
bet Σ (typically, Σ = 2AP), a finite set Q of states, an initial
state ι ∈ Q, and a transition function δ : Q × Σ → Q. The
size of D is the number of its states.

Let α = α0α1 · · · denote a finite or infinite sequence
over the alphabet Σ. The run (aka path) induced by α is
the sequence q0q1 · · · of states where q0 = ι and qi+1 =
δ(qi, αi) for every i < |α|. We extend δ to the function
Q × Σ∗ → Q as follows: δ(q, λ) = q, and for n > 0, if
qn = δ(q, α0 · · ·αn−1) then δ(q, α0α1 · · ·αn) = δ(qn, αn).
Definition 4. The product of two transition systems Di =
(Σ, Qi, ιi, δi) (for i = 1, 2) over the same input alphabet is
the transition systemD1×D2 = (Σ, Q, ι, δ) whereQ = Q1×
Q2; ι = (ι1, ι2); and δ((q1, q2), x) = (δ(q1, x), δ(q2, x)).
The product D1 × D2 × · · · × Dn can be similarly defined
for any finite sequence D1, D2, · · · , Dn of transition systems
over the same input alphabet Σ.
Parity Automata. Automata can be seen as transition-
systems with an acceptance condition. To handle LTL, we
use the parity acceptance condition. A Deterministic Parity
Word automaton (DPA) A = (D, c) consists of a determinis-
tic transition system D and a coloring function c : Q → Z.
The index of A is the number of integers in the image of c,
i.e., |{n ∈ Z | c−1(n) 6= ∅}|. An infinite run ρ = q0q1 · · ·
satisfies c (alternatively, accepted) iff the smallest n such that
c(qi) = n for infinitely many i is even. An infinite string
α ∈ Σω is accepted by A = (D, c) iff its run satisfies c. The
set of infinite strings accepted by A is the language of A.

Theorem 4 (LTL to DPA). (cf. [Vardi, 1995]) Given an LTL
formula ϕ, one can build a DPA Aϕ accepting exactly the
models of ϕ, whose size is at most doubly exponentially in
|ϕ| and whose index is at most singly exponential in |ϕ|.

If Ai = (Di, ci) are DPAs, and D is the product transition-
system, we can lift the winning conditions ci to the product
by ignoring the other components:

Definition 5. For DPAs Ai = (Di, ci) and writing D for
the product of their transition systemsD1, · · · , Dk, define the
lifting of ci to D to be the coloring function di : Q → Z
defined by di(q1, · · · , qk)

.
= ci(qi).

Note that (D, di) is a DPA, and its language is the same as
the language of the DPA (Di, ci).

Games on Deterministic Automata. It is known that solv-
ing synthesis (without environment assumptions) for an LTL
goal ϕ can be reduced to solving a two-player game of perfect
information on the DPA corresponding to ϕ. We describe this
process below since we will later generalize it. The contents
of this section are an adaptation of standard material on parity
games [Apt and Grädel, 2011] to our setting.

Informally, the current position in the game is a state q of
the DPA, first the environment moves by setting X ′ ⊆ X ,
then the agent follows by setting Y ′ ⊆ Y , and the posi-
tion in the game is updated to the state δ(q, (X ′ ∪ Y ′)).
This interaction generates an infinite run, and the agent is
declared the winner if the run satisfies the parity condition.
Formally, a DPA-game is played on a DPA A = (D, c) in
which Σ = 2X∪Y , by the two players, agent and environ-
ment. The transition system D = (Σ, Q, ι, δ) is called the
arena of the game, and c is called the objective of the game.
An agent strategy σag : (2X)+ → 2Y is winning if for every
strategy σenv of the environment, the trace PLAY(σag, σenv)
is accepted by the DPA A (i.e., the run on the trace satisfies
c). Similarly, a strategy σenv : (2Y)∗ → 2X for the envi-
ronment is winning if for every strategy σag of the agent, the
trace PLAY(σag, σenv) is not accepted by the DPAA (thus, the
objective c of the game is from the agent’s point of view). A
player’s winning region in the DPA-game on A is the set of
states q for which that player is winning in the DPA-game on
(Σ, Q, q, δ, c), i.e., starting from q. A strategy for a player that
is winning from every state in her winning region is called
uniform winning.

If the agent makes its moves just by looking at the cur-
rent environment move and the current state of the DPA (in-
stead of the exact full history of environment moves), then
we say that the agent is using a positional strategy. For-
mally, a function fag : Q × 2X → 2Y induces the posi-
tional agent strategy σag: σag(X0) = fag(ι,X0), and for
n > 0, σag(X0X1 · · ·Xn) = fag(qn, Xn) where qn

.
=

δ(ι, α) and α is the finite sequence played up until now,
i.e., α = (X0 ∪ σag(X0))(X1 ∪ σag(X0X1)) · · · (Xn−1 ∪
σag(X0X1 · · ·Xn−1)). We can similarly define environment
positional strategies as functions fenv : Q→ 2X .

The relevant computational problem associated with a
DPA-game is to compute, for a given player, that player’s
winning region W , as well as a uniform winning positional
strategy for that player. We call this solving the game.

Theorem 5. DPA-games can be solved in time polynomial in
the size of A and exponential in the index of A.

We also consider the case where the agent and environ-
ment co-operate. Formally, a pair of strategies σag, σenv is co-
operatively winning if the trace PLAY(σag, σenv) is accepted
by the DPA A. The co-operative winning region W ′ of a
DPA-game A is the set of states q for which there is a pair of
strategies that are co-operatively winning in the game played
on (Σ, Q, q, δ, c), i.e., starting from q. Solving a co-operative
DPA-game onAmeans to find the setW ′, as well as a pair of
uniform positional strategies (although we will only use the
agent’s) that co-operatively win from every state in W ′. Note
that this amounts to solving the emptiness problem for A.
Theorem 6. Co-operative DPA-games can be solved in time
polynomial in both the size and index of the given DPA A.

We will sometimes need a way to limit the environment to
moves that do not leave a given set of states Q′. We do this
by introducing a sink-state, and redirecting to it moves of the
environment that start in Q′ and for which some response of
the agent leaves Q′:
Definition 6. Let D = (Σ, Q, ι, δ) be an arena and let Q′ ⊆
Q be a set of states. The environment-restriction of D to Q′
is the arena (Σ, Q ∪ {sink}, ι, δ′), where δ′ agrees with δ
except that δ′(q, (X ′ ∪ Y ′)) = sink in case q = sink, or
q ∈ Q′ and δ(q, (X ′ ∪ Z)) 6∈ Q′ for some Z ⊆ Y .

5 Computing Best-Effort Strategies
In this section we establish the main result of the paper:
Theorem 7. Best-effort synthesis under environment as-
sumptions (for LTL goals and assumptions) is 2-EXPTIME
complete.

The main implication of this theorem is that it provides the
following alternative approach to synthesis, with or without
assumptions: instead of trying to solve reactive synthesis —
which in case the formula ϕ is not agent-enforceable returns
no strategy (i.e., gives up) — one can for the same cost search
for a best-effort strategy which always exists and, in case ϕ is
agent-enforceable, enforces ϕ.

The lower-bound is achieved by a reduction from reac-
tive synthesis (without environment assumptions), which is
2EXPTIME complete [Pnueli and Rosner, 1990]. In the re-
mainder of this section we provide an algorithm for the upper-
bound. The idea is to reduce the problem to computing suit-
able winning and co-operatively winning strategies of certain
DPA-games. Note that the case without environment assump-
tion was solved in [Faella, 2009]. One can recover this case
from our algorithm simply by setting E = true.
Algorithm A. Given LTL formulas ϕ and E :

1. For every ξ ∈ {¬E , E ⊃ ϕ, E ∧ ϕ} compute the DPAs
Aξ = (Dξ, cξ) (Theorem 4).

2. Form the product D = D¬E ×DE⊃ϕ ×DE∧ϕ, and de-
note the lifted priority functions on D by d¬E , dE⊃ϕ and
dE∧ϕ (Definitions 4 and 5).

3. In the DPA-game on (D, dE⊃ϕ), compute a uniform
positional winning agent strategy fag for dE⊃ϕ (Theo-
rem 5). Let W ⊆ Q be the agent’s winning region.

4. In the DPA-game on (D, d¬E), compute the environ-
ment’s winning region V ⊆ Q (Theorem 5). Thus, the
environment can ensure E holds from every state in V .

5. Compute the environment-restriction of D to the set V ,
and call the resulting transition systemD′ (Definition 6).
Form the DPA-game (D′, dE∧ϕ) where the parity of the
new sink state is given an odd color smaller than all even
colors in D.

6. In the DPA-game (D′, dE∧ϕ), find a uniform positional
strategy gag that is co-operatively winning (Theorem 6).

7. Return the agent strategy induced by the positional
strategy kag : Q × 2X → 2Y : kag(q,X ′) = fag(q,X

′)
if q ∈W , and kag(q,X ′) = gag(q,X

′) otherwise.
Correctness of Algorithm A. The correctness of Algo-
rithm A uses the notion of a value val(h) of a history h:
the value is “winning” if the player can enforce the goal un-
der the environment assumption starting from h; “losing”
if all plays extending h, that are consistent with an envi-
ronment strategy that enforces the assumption, violate the
goal; and “pending” otherwise. This allows one to charac-
terize best-effort strategies as those that witness the value
val(h) of every history h consistent with it [Berwanger, 2007;
Aminof et al., 2020]. Here is a formalization of the main con-
siderations. For a joint history h ∈ (2X∪Y)∗, letE(h, σag) be
the set of all environment strategies σenv that enforce E and
for which h is consistent with σag, σenv; and letH(σag) be the
set of all h for which E(h, σag) 6= ∅. Define:

• val(σag, h) := +1 (winning) if PLAY(σag, σenv) |= ϕ
for every σenv ∈ E(h, σag);

• val(σag, h) := −1 (losing) if PLAY(σag, σenv) |= ¬ϕ for
every σenv ∈ E(h, σag);

• val(σag, h) := 0 (pending) otherwise.
Let val(h) be the maximum of val(σ, h) where σ varies

over all agent-strategies for which h ∈ H(σ).1 The next the-
orem follows from the cited characterization of dominance:
Theorem 8. An agent strategy σ is best-effort iff val(σ, h) =
val(h) for every history h ∈ H(σ).
Example 2. To see that σ in Example 1 is best-effort use The-
orem 8. To that end, let h ∈ H(σ). First note that val(h) < 1
since the environment strategy that always requests, except
where not specified in h, enforces E and ¬ϕ. Second, note
that ϕ can be violated by a history that contains r and then
(possibly at the same time) a g immediately followed by r. If
h is such a history, then val(h) = −1, and thus val(σ, h) =
val(h). So, suppose h is not such a history. Let σenv be the
environment strategy that never requests, except where spec-
ified in h and immediately after h. Note that σenv enforces
E , and thus val(h) > −1 since an agent can safely respond
to any outstanding requests. Since, in particular, σ safely re-
sponds to any outstanding request, also val(σ, h) > −1, and
thus also in this case val(σ, h) = val(h) = 0.

The correctness of Algorithm A follows immediately from:
Theorem 9. Let σA be the agent-strategy produced by Algo-
rithm A, and let h ∈ H(σ). Then val(σA, h) = val(h).

1We use val(h) only in cases where h ∈ H(σ) for some σ.

Intuitively, the strategy σA returned by Algorithm A has
the property that histories that lead to states inW are winning
(from these states the agent can enforce E ⊃ ϕ, and thus in
particular can enforce ϕ assuming E), histories that lead to
states in W ′ \ W , where W ′ is the co-operatively winning
region from step 6 in the game (D′, dE∧ϕ), are pending (from
these states there is an environment strategy σenv enforcing E
such that PLAY(σA, σenv) |= ϕ), and the rest are losing.

6 Strategy-based vs. Trace-based Approaches
While this paper adopts a strategy-based approach to synthe-
sis [Mogavero et al., 2014; Kupferman et al., 2001; Aminof
et al., 2019; 2020], traditional synthesis follows a trace-
based approach [Pnueli and Rosner, 1989; Bloem et al., 2014;
Camacho et al., 2018]: synthesis for ϕ using the environment
assumption E is solved by finding an agent strategy that en-
forces E ⊃ ϕ against all environment strategies, i.e., the as-
sumption E is pushed into the goal formula instead of being
used to limit the set of environment strategies. Unfortunately,
while this works when synthesizing enforcing strategies, the
example below clearly shows that it is inadequate when look-
ing for best-effort strategies.

Consider a Star-Wars setting where the droid C-3PO is cap-
tured and made to work at a space port, loading boxes onto a
cargo vessel. At every time-step, a few new boxes, of varying
weights, may be added to the pending pile. Being a protocol
droid, C-3PO is not very strong, and can load at most 30 kilo-
grams in one time step. With the help of R2-D2, C-3PO learns
that the space-port works under the following strict protocol:
if at the time the cargo vessel has to leave, the loading is not
finished, he will be declared inefficient and dismantled for
parts in the next time step. He is otherwise safe except that, if
he ever stops loading when there are pending boxes, he will
be declared lazy and dismantled in the next time step. C-3PO
thus forms the assumption E on the environment by taking
the rules above conjuncted with the fact that if he sees Luke
Skywalker then he will be rescued after two time steps.

For obvious reasons, C-3PO has the following goal ϕ:
¬dismantledU rescued. Unfortunately, the vessel’s departure
time, the new boxes that may be added at each time step, and
Luke Skywalker’s timing, are not under his control, making
it impossible for him to have a winning strategy.

It is not hard to see that a best-effort strategy for ϕ under
the assumption E will result in C-3PO continuously loading
boxes unless there are no boxes to load, or the cargo vessel
has to leave, or he previously saw Luke Skywalker. Indeed,
any other strategy cannot be maximal since it is guaranteed,
by the assumption E , to get C-3PO dismantled.

On the other hand, when considering the implication E ⊃
ϕ, any strategy σag that loads nothing on the first step is not
dominated by any strategy σ′ag that does! To see that, con-
sider an environment strategy σenv that operates as follows:
it starts with 40 kilograms of boxes in the pile; if C-3PO
loads nothing in the first time step then do nothing in the next
step; otherwise, declare that it is time for the vessel to leave,
and dismantle C-3PO in the next step. Hence, against σenv,
the strategy σag achieves the implication, whereas σ′ag does
not. Obviously, σenv is irrelevant since it blatantly violates E .

However, when synthesizing for E ⊃ ϕ (unlike synthesizing
for ϕ under E) it is still considered. Hence, by taking a max-
imal element from the set of strategies σag that load nothing
on the first step, we get a best-effort strategy for E ⊃ ϕ that is
a guaranteed suicide: it is an unconditionally losing strategy
for the goal under E , and it never achieves the goal on any
trace that satisfies E!

7 Best-Effort Synthesis in LTLf

Although many environment assumptions are naturally ex-
pressed in LTL (e.g., fairness assumptions), other classic ones
such as planning domains and safety can be expressed in
LTLf . In this section we show that the framework for LTL
also applies to LTLf . The main difference is that in the this
case we can give an algorithm for finding best-effort strate-
gies that only uses classic simple graph-algorithm building
blocks, such as breadth-first search, fixed-point algorithms,
and subset constructions for determinization. In other words,
the algorithm in this section lends itself to implementation.
LTLf . Linear-time Temporal Logic on Finite Traces, LTLf ,
has the same syntax as LTL but is interpreted on finite traces
τ ∈ (2AP)+ [De Giacomo and Vardi, 2013] 2. For the se-
mantics, only the temporal operators are reinterpreted. This
is done as follows. For n < |τ |:

• (τ, n) |= Xϕ iff n+ 1 < len(τ) and (τ, n+ 1) |= ϕ;
• (τ, n) |= ϕ1 Uϕ2 iff there exists i with n ≤ i < len(τ)

such that (τ, i) |= ϕ2 and for all i ≤ j < n, (τ, j) |= ϕ1.

Let X̃ be the dual of X, i.e., X̃
.
= ¬X¬ϕ. Semantically,

(τ, n) |= X̃ϕ iff n+ 1 < len(τ) implies (τ, n+ 1) |= ϕ.
Thus, the main difference is that while in LTL the X oper-

ator is its own dual (i.e., ¬X¬ϕ ≡ Xϕ), this is not true in
LTLf , where the dual of X has a different meaning to X.

An important computational advantage of LTLf is that it
can be translated into ordinary finite-state automata. A De-
terministic Finite Automaton (DFA) A = (D,F) consists of
a deterministic transition system D and a set F ⊆ Q of final
states. A finite run ρ = q0q1 · · · qn is accepting iff qn ∈ F .
A finite string α ∈ Σ∗ is accepted if its run is accepting.
LTLf Synthesis under Assumptions Over finite traces
there is the issue of how a play stops. We redefine agent
strategies to be partial functions σag : (2X)+ ↪→ (2Y)
and require environment strategies be total as before σenv :
(2Y)∗ → (2X). Then, we redefine PLAY(σag, σenv) to be the
longest (finite or infinite) trace that is consistent with both
strategies. Note that a play is finite if it ends in an environ-
ment move for which the agent strategy, being a partial func-
tion, specifies no next move (which we think of as the agent
stopping the play). Let ϕ, E be LTLf formulas over X ∪ Y .
An agent strategy σag enforces ϕ, written σag B ϕ, iff
∀σenv. (PLAY(σag, σenv) is finite and PLAY(σag, σenv) |= ϕ)

Asymmetrically, we say that an environment strategy σenv en-
forces E , written σenv B E , if
∀σag. (PLAY(σag, σenv) is finite implies PLAY(σag, σenv) |= E)

2In fact all results presented here apply also to the extension
LDLf of LTLf , which captures monadic-second-order logic on finite
traces [De Giacomo and Vardi, 2013].

The asymmetry in the definition stems from the fact that, in-
tuitively, an agent cannot enforce ϕ unless she stops the play.

Remaining definitions The rest of the LTLf treatment
mimics that of LTL simply by replacing LTL by LTLf in
Definitions 1, 2, and 3. We also replace DPAs by ordinary
finite-state automata. Then, Theorems 1 and 4 hold for LTLf
and DFA. In particular, one can obtain a DFA, of double-
exponential size, accepting exactly the models of a given
LTLf formula [De Giacomo and Vardi, 2013]. Games can
be played on DFAs as for DPAs except that the agent is try-
ing to end the play in a final state, i.e., an agent strategy σag
is winning if for every environment strategy σenv, the trace
PLAY(σag, σenv) is finite and is accepted by the DFA; dually,
an environment strategy σenv is winning if for every agent
strategy σag, if PLAY(σag, σenv) is finite then it is not accepted
by the DFA.

Best-Effort LTLf Synthesis. The algorithm below finds
best-effort strategies under environment assumptions in the
LTLf case (we contextually discuss each step). The main dif-
ference to Algorithm A is that we replace DPAs by DFAs.
Algorithm B. Given LTLf formulas ϕ and E :

1. For every ξ ∈ {¬E , E ⊃ ϕ, E ∧ ϕ} compute the DFAs
Aξ = (Dξ, Fξ) [De Giacomo and Vardi, 2013].

2. Form (in linear time) the product D = D¬E ×DE⊃ϕ ×
DE∧ϕ. Lift the final states of each component to
the product, e.g., if AE = (DE , FE) is the DFA for
E , then the lifted condition GE consists of all states
(q¬E , qE⊃ϕ, qE∧ϕ) ∈ Q such that qE ∈ FE .

3. In the DFA-game (D,FE⊃ϕ), compute (in linear time)
a uniform positional winning agent strategy fag. Let
W ⊆ Q be the agent’s winning region. Finding win-
ning regions and computing uniform positional winning
strategies in DFA-games can be done in linear-time by a
simple fixed-point algorithm [Apt and Grädel, 2011].

4. In the DFA-game (D,F¬E), compute (in linear time) the
environment’s winning region V ⊆ Q.

5. Compute (in linear-time) the environment-restriction D′
of D to the set V .

6. In the DFA-game (D′, FE∧ϕ), find (in linear time, e.g.
using breadth-first search) a co-operatively winning uni-
form positional strategy gag.

7. Return the agent strategy induced by the positional
strategy kag : Q × 2X → 2Y : kag(q,X ′) = fag(q,X

′)
if q ∈W , and kag(q,X ′) = gag(q,X

′) otherwise.

Algorithm B provides a 2-EXPTIME upper-bound; the lower-
bound is derived in a similar way to the LTL case by a
reduction from LTLf -synthesis which is 2-EXPTIME com-
plete [De Giacomo and Vardi, 2015].

Theorem 10. Best-effort synthesis under environment as-
sumptions (for LTLf goals and assumptions) is 2-EXPTIME
complete.

Thus, Algorithm B is optimal, and although it has the same
worst-case complexity as Algorithm A, it makes use of much
simpler graph-algorithm building-blocks.

8 Related Work
Best-effort strategies are maximal in the dominance order.
These notions originate in game-theory, where dominance
is also called weak-dominance [Apt and Grädel, 2011], and
best-effort is sometimes called admissible.

In formal methods, best-effort synthesis, and synthesis un-
der environment assumptions, were mainly considered in iso-
lation, and almost always in the trace-based setting, e.g.,
[Pnueli and Rosner, 1989; Faella, 2009; Brenguier et al.,
2017]; see [Bloem et al., 2014] for a survey. [Faella, 2009]
argues for best-effort strategies as reasonable responses in en-
vironments that may not be adversarial, characterizes goals
admitting positional best-effort strategies, and shows how to
compute such strategies (for LTL goals, this results in a spe-
cial case of Algorithm A). Few papers, either directly or indi-
rectly, consider best-effort and assumptions at the same time
(e.g., [Damm and Finkbeiner, 2014] does so in a trace-based
setting). The problems studied there are different: they are
mainly concerned with looking for a strategy that dominates
all other strategies (i.e., maximum rather than maximal), and
in case it exists, they synthesize the weakest-environment as-
sumption under which it achieves the goal.

More closely related are works that consider the multi-
agent setting where agent i has as an assumption the goal
of agent j, and thus naturally take the strategy-based view.
Notably, [Berwanger, 2007] pioneers the study of dominance
in games played on graphs. [Brenguier et al., 2014] stud-
ies the problem of deciding the existence of strategy profiles
and corresponding model-checking problems. The problems
studied here can be expressed in their setting, however, in our
case the existence problem is trivial, and we deal with synthe-
sis not with model-checking. [Brenguier et al., 2017] studies
assume-admissible (AA) synthesis which is similar but dif-
ferent to ours; cast in our setting, AA looks for strategies that
enforce ϕ against environment strategies that are best-effort
(without assumptions) for E , whereas we are looking for best-
effort agent strategies for ϕ against environments that enforce
E . In particular, if E is environment-enforceable, AA is equiv-
alent to synthesis (without assumptions).

The closest paper to ours is [Aminof et al., 2020] where the
problem of best-effort synthesis under environment assump-
tions is introduced in the context of two environments (ex-
pected and exceptional), and shown to be decidable. Strictly
speaking, we do not provide an alternative solution to their
problem, since we only deal with a single environment spec-
ification; and their paper does not include our problem as a
special case due to extra requirements that they impose. How-
ever, one can extract from their decidability proof a 4- EXP-
TIME upper bound to our problem. Finally, their technique
is different from ours: theirs characterizes the set of all best-
effort strategies using tree-automata, while ours computes a
single best-effort strategy by solving certain games.

Acknowledgments
This work is partially supported by the Austrian Science Fund
(FWF): P 32021, the ERC Advanced Grant WhiteMech (No.
834228), and the EU ICT-48 2020 project TAILOR (No.
952215)

References
[Aminof et al., 2018] Benjamin Aminof, Giuseppe De Gia-

como, Aniello Murano, and Sasha Rubin. Synthesis under
assumptions. In KR, pages 615–616, 2018.

[Aminof et al., 2019] B. Aminof, G. De Giacomo, A. Mu-
rano, and S. Rubin. Planning under LTL environment
specifications. In ICAPS, 2019.

[Aminof et al., 2020] B. Aminof, G. De Giacomo, A. Lo-
muscio, A. Murano, and S. Rubin. Synthesizing strategies
under expected and exceptional environment behaviors. In
IJCAI, 2020.

[Apt and Grädel, 2011] K.R Apt and E. Grädel. Lectures in
game theory for computer scientists. Cambridge, 2011.

[Baier et al., 2008] Christel Baier, Joost-Pieter Katoen, and
Kim Guldstrand Larsen. Principles of Model Checking.
2008.

[Bertsekas, 2005] Dimitri P. Bertsekas. Dynamic program-
ming and optimal control. Athena Scientific, 2005.

[Berwanger, 2007] D. Berwanger. Admissibility in infinite
games. In STACS, 2007.

[Bloem et al., 2014] Roderick Bloem, Rüdiger Ehlers, Swen
Jacobs, and Robert Könighofer. How to handle assump-
tions in synthesis. In SYNT, 2014.

[Brenguier et al., 2014] Romain Brenguier, Jean-François
Raskin, and Mathieu Sassolas. The complexity of admis-
sibility in omega-regular games. In Thomas A. Henzinger
and Dale Miller, editors, CSL-LICS, 2014.

[Brenguier et al., 2017] R. Brenguier, J. Raskin, and O.
Sankur. Assume-admissible synthesis. Acta Inf., 54(1),
2017.

[Camacho et al., 2018] A. Camacho, M. Bienvenu, and S.
McIlraith. Finite LTL synthesis with environment assump-
tions and quality measures. In KR, 2018.

[Church, 1963] A. Church. Logic, arithmetics, and au-
tomata. In Proc. Int. Cong. Mathematicians, 1962, 1963.

[Damm and Finkbeiner, 2014] Werner Damm and Bernd
Finkbeiner. Automatic compositional synthesis of dis-
tributed systems. In FM, 2014.

[De Giacomo and Rubin, 2018] G. De Giacomo and S. Ru-
bin. Automata-theoretic foundations of FOND planning
for LTLf and LDLf goals. In IJCAI, 2018.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, 2013.

[De Giacomo and Vardi, 2015] G. De Giacomo and
M. Vardi. Synthesis for LTL and LDL on finite
traces. In IJCAI, 2015.

[D’Ippolito et al., 2018] N. D’Ippolito, N. Rodrı́guez, and S.
Sardiña. Fully observable non-deterministic planning as
assumption-based reactive synthesis. J. Artif. Intell. Res.,
61, 2018.

[Faella, 2009] M. Faella. Admissible strategies in infinite
games over graphs. In MFCS, 2009.

[Finkbeiner, 2016] B. Finkbeiner. Synthesis of reactive sys-
tems. Dependable Software Systems Eng., 45, 2016.

[Kupferman et al., 2001] Orna Kupferman, Moshe Y Vardi,
and Pierre Wolper. Module checking. Inf. Comput.,
164(2):322–344, 2001.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M.Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Trans. Comput. Log.,
15(4), 2014.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the
synthesis of a reactive module. In POPL, 1989.

[Pnueli and Rosner, 1990] Amir Pnueli and Roni Rosner.
Distributed reactive systems are hard to synthesize. In
FOCS, 1990.

[Tabajara and Vardi, 2020] Lucas M. Tabajara and Moshe Y.
Vardi. LTLf Synthesis under Partial Observability: From
Theory to Practice. In GandALF, 2020.

[Tabakov and Vardi, 2005] Deian Tabakov and Moshe Y.
Vardi. Experimental evaluation of classical automata con-
structions. In LPAR, 2005.

[Vardi, 1995] Moshe Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Faron Moller and
Graham M. Birtwistle, editors, Logics for Concurrency -
Structure versus Automata, volume 1043 of LNCS, 1995.

[Zhu et al., 2017] Shufang Zhu, Lucas M. Tabajara, Jianwen
Li, Geguang Pu, and Moshe Y. Vardi. Symbolic LTLf syn-
thesis. In IJCAI, 2017.

[Zhu et al., 2020] Shufang Zhu, Giuseppe De Giacomo,
Geguang Pu, and Moshe Y. Vardi. LTLf synthesis with
fairness and stability assumptions. In AAAI, 2020.

