
HyperLDLf: a Logic for Checking Properties of Finite Traces Process Logs

Giuseppe De Giacomo,1, Marco Montali, 2, Paolo Felli 2, Giuseppe Perelli 1

1 Sapienza University of Rome
2 Free University of Bozen-Bolzano

degiacomo@diag.uniroma1.it, {montali,pfelli}@inf.unibz.it, perelli@diag.uniroma1.it

Abstract
Temporal logics over finite traces, such as LTLf
and its extension LDLf , have been adopted in sev-
eral areas, including Business Process Management
(BPM), to check properties of processes whose
executions have an unbounded, but finite, length.
These logics express properties of single traces in
isolation, however, especially in BPM it is also of
interest to express properties over the entire log,
i.e., properties that relate multiple traces of the log
at once. In the case of infinite-traces, HyperLTL
has been proposed to express these “hyper” proper-
ties. In this paper, motivated by BPM, we introduce
HyperLDLf , a logic that extends LDLf with the
hyper features of HyperLTL. We provide a sound,
complete and computationally optimal technique,
based on DFAs manipulation, for the model check-
ing problem in the relevant case where the set of
traces (i.e., the log) is a regular language. We il-
lustrate how this form of model checking can be
used to specify and verify sophisticated properties
within BPM and process mining.

1 Introduction
Temporal logics traditionally assume that the traces gener-
ated by the dynamic system of interest have infinite length.
This does not match a variety of different settings where
traces have an unbounded, but finite, length, such as planning
[Baier and McIlraith, 2006; Baier et al., 2007; Gerevini et al.,
2009] and Business Process Management (BPM) [Dumas et
al., 2018; van der Aalst and others, 2011].

To specify and reason about temporal properties of finite
traces, De Giacomo and Vardi (2013) studied two finite-
trace variants of Linear Temporal Logic and Linear Dynamic
Logic, namely LTLf and LDLf . These logics turned out to be
particularly important in BPM: LTLf has become the formal
basis for one of the most studied declarative process modeling
notations [Pesic et al., 2007], while LDLf has been employed
to realize advanced forms of process monitoring and runtime
verification [De Giacomo et al., 2014]. Notably, these logics
are not only interesting from the semantical point of view, but
also bring an operational advantage over their infinite-trace
counterparts, since reasoning can be carried out by directly

manipulating finite-state automata, without appealing to au-
tomata over infinite objects [De Giacomo and Vardi, 2013;
De Giacomo et al., 2014].

LTLf and LDLf express properties of single traces in
isolation. However, especially in BPM it is also of inter-
est to express properties that relate multiple traces at once
(see, e.g., [van der Aalst et al., 2004; Weidlich et al., 2011;
Rinderle-Ma et al., 2016]). Two specific settings arise in this
spectrum. In the first setting, such traces belong to the over-
all, possibly infinite log of traces representing all the valid
executions of a given process model. In this case, traces are
implicitly represented in the form of a finite-state transition
system or a bounded Petri net interpreted under interleaving
semantics, which guarantee that the induced log forms a regu-
lar language. These logs not only capture any finite concrete
process log, but also capture logs that can be inferred through
sampling by model-learning and process mining techniques
[Vaandrager, 2017; van der Aalst, 2011]. In the second set-
ting, which is the typical one in business process management
[van der Aalst and others, 2011], traces belong to a finite event
log explicitly storing a set of observed process executions,
representing a factual sample of all the traces that belong to
an unknown process, which again is assumed to be regular.

In the case of infinite-traces, HyperLTL has been pro-
posed to express “hyper” properties that quantify over mul-
tiple traces at once [Clarkson et al., 2014]. In this paper, mo-
tivated by BPM we introduce HyperLDLf and its fragment
HyperLTLf : two extensions of LDLf and LTLf , respectively,
that have the ability to express and verify hyper-properties of
finite traces.

To handle the analysis of (finite and infinite) logs, we in
particular focus on the very significant task of model check-
ing: the task of verifying HyperLDLf formulas over a regular
log, i.e., a (possibly infinite) set of traces forming a regular
language. We study the HyperLDLf model checking prob-
lem in the key setting where the regular log is compactly
described by a deterministic finite automaton. Specifically,
we show that model-checking a HyperLDLf formula with k
alternations of trace quantifiers is k-EXPSPACE-complete.
Notably, we show the upper bound by presenting a sound
and complete algorithm based on manipulation of regular au-
tomata that retains the good, practical computational char-
acteristics already exploited in several reasoning tasks for
LTLf /LDLf . Finally, we go back to our original motivation

and discuss how HyperLTLf and HyperLDLf can be used
to specify and verify relevant, sophisticated properties within
BPM and process mining.

2 Automata and Languages
We recall some basic notions on alternating, nondeterminis-
tic, universal, and deterministic finite automata. All these au-
tomata capture regular languages but they have different char-
acteristics that we will exploited later [Davis et al., 1994]. For
a given set X , B+(X) is the set of positive Boolean formulas
over X , that is Boolean formulas built from elements of X
using ∧ and ∨, where we also allow true and false. A subset
Y ⊆ X satisfies a Boolean formula χ ∈ B+(X) if the truth
assignment assigning true to the elements in Y and false to
the elements in X \ Y satisfies χ. Given an alphabet Σ, a
finite word over it is a finite sequence w = σ0 ·σ1 · . . . ·σn of
letters in Σ. By |w| = n+1 we denote the length ofw. More-
over, by Σ∗ we denote the set of all possible finite words over
Σ. An alternating finite automaton (AFA) on finite words is a
tuple A =〈Σ, Q, q0, δ, F 〉 where Σ is the (finite) input alpha-
bet, Q is a finite set of states with q0 ∈ Q being initial state,
δ : Q × Σ → B+(Q) is a transition function and F ⊆ Q is
a set of final states. Intuitively, the transition function δ(q, σ)
describes the possible configurations that A can reach when
reading the symbol σ while being in state q. The automaton
A is nondeterministic (NFA), denotedN , or universal (UFA),
denoted U , if δ(q, σ) contains only disjunctions or conjunc-
tions, respectively. Finally, it is deterministic (DFA), denoted
D, if the transition function maps each pair (q, σ) to a single
state q′.

The concepts of run, accepting run, and accepted word for
an automaton A are quite standard and we refer to [Leiss,
1985; Davis et al., 1994] for their formal definition. Let
L(A) be the set of words accepted by the automaton A. Re-
call that every automaton A can be turned into an equivalent
nondeterministic one N , that is, such that L(A) = L(N).
Such operation is called nondeterminization and by Ndet(A)
we denote the nondeterministic equivalent automaton. Anal-
ogously, we can turn an automaton A into a universal one,
denoted Univ(A). Such operation is called universalization.
Moreover, recall that if A is either alternating or univer-
sal, Ndet(A) can be of size exponential w.r.t. |A|. Analo-
gously, ifA is either alternating or nondeterministic, Univ(A)
can be of size exponential w.r.t. |A| [Chandra et al., 1981;
Davis et al., 1994].

3 HyperLDLf over Finite Traces
We start by defining the hyper-version of LDLf . We refer to
[De Giacomo and Vardi, 2013] for details on LDLf itself.

Definition 1 (HyperLDLf syntax). For a set AP containing
atomic propositions p and a set V of trace variables π, the
syntax of HyperLDLf is the following:

ϕ := ψ | ∃πϕ | ∀πϕ
ψ := tt | ff | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈ρ〉ψ | [ρ]ψ
ρ := φ | ψ? | ρ+ ρ | ρ; ρ | ρ∗
φ := pπ | ¬pπ | φ ∧ φ | φ ∨ φ

Observe that the atomic propositions occurring in a
HyperLDLf formula are typed over the trace (variable) on
which they are evaluated. This is also the case for the
propositional true and false predicate. In particular, we have
trueπ

.
= pπ ∨ ¬pπ and falseπ

.
= ¬trueπ for every trace vari-

able occurring in a HyperLDLf formula. Analogously, by
trueP

.
=
∧
π∈P trueπ and falseP

.
= ¬trueP we denote the

propositional true and false over a set of traces. For conve-
nience we use the abbreviation finishedπ

.
= [trueπ]ff to spec-

ify that a trace π is finished, and lastπ
.
= 〈trueπ〉finishedπ to

specify the last element of the trace.
A log Log ⊆ (2AP)∗ is a (possibly infinite) subset of traces

over the powerset of AP. Note that an element P of 2AP can
be regarded also as a truth-assignment of AP, where every
element in P takes the value true and every element not in
P takes the value false. For a trace t ∈ Log, |t| denotes the
length of t. By t[i] we denote the i-th element over t, with t[0]
and t[|t|−1] being the first and last elements, respectively. For
every i, j ∈ N with i ≤ j, by t[i, j], we denote the subtrace
obtained from t by taking the elements form t[i] to t[j−1].
For the case of |t| ≤ i, the trace t[i, j] = ε is the empty trace.
For the case i < |t| ≤ j, the trace t[i, j] = t[i, |t|−1] is the
suffix of t starting from the i-th element. We also denote the
suffix of t from element i with t[i, . . .].

A trace assignment (or simply assignment) Π : V → Log
is a function mapping trace variables V to concrete traces in
Log. By Π[π ← t] we denote the trace assignment that ad-
heres with Π, except that Π[π ← t](π) = t, that is, t is
assigned to π. By Π[i, j], for every i, j ∈ N, we denote the
projection of assignment Π over the subtraces between i and
j, i.e., such that Π[i, j](π) = Π(π)[i, j] for each π ∈ V . By
Π[i, . . .], for every i ∈ N, we denote the projection of Π over
the suffix from i, i.e., such that Π[i, . . .](π) = Π(π)[i, . . .] for
each π ∈ V .

The semantics of a HyperLDLf formula over a set Log of
traces, a trace assignment Π, and a natural number i ∈ N is
given as follows:

• Log,Π, i |= ∃πϕ if there exists t ∈ Log such that
Log,Π[π ← t], i |= ϕ;

• Log,Π, i |= ∀πϕ if for each t ∈ Log it holds that
Log,Π[π ← t], i |= ϕ;

• Log,Π, i |= tt;
• Log,Π, i 6|= ff;
• Log,Π, i |= ¬ψ if Log,Π, i 6|= ψ;
• Log,Π, i |= ψ1 ∧ ψ2 if both Log,Π, i |= ψ1 and

Log,Π, i |= ψ2;
• Log,Π, i |= ψ1 ∨ ψ2 if either Log,Π, i |= ψ1 or

Log,Π, i |= ψ2;
• Log,Π, i |= 〈ρ〉ψ if there exists j ≥ i such that (i, j) ∈
RΠ(ρ) and Log,Π, j |= ψ;

• Log,Π, i |= [ρ]ψ if for each j ≥ i such that (i, j) ∈
RΠ(ρ) it holds that Log,Π, j |= ψ,

where the relation RΠ(ρ) contains all pairs of indexes (i, j)
so that Π(π)[i, j] conforms to ρ for each π that appears as an
index of a proposition in ρ, defined as follows:

- (i, j) ∈ RΠ(pπ) if j = i + 1, Π(π)[i, j] 6= ε, and p ∈
Π(π)[i];

- (i, j) ∈ RΠ(¬pπ) if j = i + 1, Π(π)[i, j] 6= ε, and
p /∈ Π(π)[i];

- (i, j) ∈ RΠ(ψ1 ∧ ψ2) if (i, j) ∈ RΠ(ψ1) and (i, j) ∈
RΠ(ψ2);

- (i, j) ∈ RΠ(ψ1 ∨ ψ2) if (i, j) ∈ RΠ(ψ1) or (i, j) ∈
RΠ(ψ2);

- (i, j) ∈ RΠ(ψ?) if j = i and Log,Π, j |= ψ;
- (i, j) ∈ RΠ(ρ1+ρ2) if either (i, j) ∈ RΠ(ρ1) or (i, j) ∈
RΠ(ρ2);

- (i, j) ∈ RΠ(ρ1; ρ2) if there exists k ∈ [i, j] such that
(i, k) ∈ RΠ(ρ1) and (k, j) ∈ RΠ(ρ2);

- (i, j) ∈ RΠ(ρ∗) if j = i or there exists k ∈ [i + 1, j]
such that (i, k) ∈ RΠ(ρ) and (k, j) ∈ RΠ(ρ∗).

By Log,Π |= ϕ we denote the fact that Log,Π, 0 |= ϕ.
A variable π in ϕ is free if it occurs out of the scope of

either ∃π or ∀π. By free(ϕ) we denote the set of free variables
in ϕ. Formula ϕ is closed if free(ϕ) = ∅. Observe that the
semantics of a closed formula ϕ replaces all the traces in the
assignment Π, which then becomes irrelevant. Thus, we can
denote by Log |= ϕ the fact that Log,Π, 0 |= ϕ for some trace
assignment Π.

Note how the semantics allows to consider the evolution
of multiple traces at once, in a synchronous fashion. Indeed,
RΠ(ρ) includes all the pairs (i, j) so that the synchronous
execution described by Π(π)[i, j] conforms to ρ, for each π
appearing in the regular expression. As a result, while evalu-
ating formulas of the form 〈ρ〉ψ or [ρ]ψ, all the traces in Log
that are assigned through Π to trace variables appearing in ρ
are synchronously executed.

Similarly to HyperLDLf , we can define the hyper-version
of LTLf [De Giacomo and Vardi, 2013].

Definition 2 (HyperLTLf syntax). For a set AP containing
atomic propositions p and a set V of trace variables π, the
syntax of HyperLTLf is the following:

ϕ := ψ | ∃πϕ | ∀πϕ
ψ := pπ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ~Xψ | ψUψ | Fψ | Gψ

In fact, HyperLDLf can express the classic linear-temporal
logic operators over finite traces such as next (X) and until
(U) and so to have HyperLTLf defined as a syntactic frag-
ment of HyperLDLf . 1 Indeed, the next and weak next oper-
ators can be encoded in HyperLDLf by Xψ

.
= 〈truefree(ψ)〉ψ

and ~Xψ
.
= ¬X¬ψ, respectively. Note that the propositional

true in the diamond operator refers only to the traces that
are free in ψ. That is, we do not impose any condition on
the rest of the traces, which may or may not terminate (or
may have terminated already) at the current execution step.
Analogously, for the until operator, we have that ψ1Uψ2

.
=

〈(ψ1? ; truefree(ψ2))
∗〉ψ2. Note that in this case it is sufficient

to impose the propositional true only on the traces occur-
ring in ψ2 since, for those occurring in ψ1, this is automat-
ically imposed by evaluating ψ1 at each step of the execution
specified in the regular expression of the diamond operator.
Clearly, we can define the finally and globally operators as
usual as Fψ .

= truefree(ψ)Uψ and Gψ
.
= ¬F¬ψ. These short-

cut definitions for the temporal operators automatically in-
duce the semantics of HyperLTLf .

1In fact HyperLTLf is a proper fragment of HyperLDLf , since
LTLf can only express star-free regular expressions [De Giacomo
and Vardi, 2013].

Note that, we can impose two traces to be of equal length
by |π1| = |π2|

.
= G(lastπ1 ↔ lastπ2). Analogously, we

can say that π1 is not longer than π2 by |π1| ≤ |π2|
.
=

(¬lastπ2
)Ulastπ1

. Finally, we can also compare the content
of traces. For example, we can say that π1 and π2 evaluate a
subset L ⊆ AP in the same way: equalL(π1, π2)

.
= |π1| =

|π2| ∧ G
∧
p∈L(pπ1

↔ pπ2
).

4 Model Checking HyperLDLf

We are interested in model checking HyperLDLf properties
over a log. In particular we focus on a quite general class of
logs: those that are regular, i.e., the set of traces in the log can
be recognized by a deterministic finite automaton, which we
call the Log DFA D, i.e., Log = L(D). We denote D,Π, i |=
ϕ the fact that L(D),Π, i |= ϕ, and by D |= ϕ the fact that
D,Π, 0 |= ϕ for some trace assignment Π. Therefore, model
checking in our context is defined as follows.

Definition 3. For a given Log DFA D and a closed
HyperLDLf formula ϕ, the model-checking problem is the
problem of deciding whether D |= ϕ.

We solve the model-checking problem by reducing it to
the emptiness problem of a suitably defined regular automa-
ton. Consider a quantifier free HyperLDLf formula ψ and
let V = {π1, . . . , πn} = free(ψ). Thus, ψ can be regarded
as an LDLf formula over

⋃
π∈V APπ , where APπ denotes

the alphabet AP relativized with variable π, i.e., APπ = {pπ
: p ∈ AP}. However, we need to consider its semantics in
the context of HyperLDLf , which provides, at once, traces of
different length. In order to use the LDLf automata construc-
tion, we restrict to trace assignments that map every variable
in traces all of the same length. To do this, consider the func-
tion tail mapping a trace assignment Π to another tail(Π) over
the same set V of traces, in which each Π(π) is replaced with
tail(Π)(π) = Π(π) · endlength(Π)−|Π(π)|+1

π
2. Intuitively, ev-

ery trace in the codomain of Π is appended with a (repeated)
tail of symbols endπ in a way that each of them has the same
length.

By Θπ = 2APπ we denote the set of possible truth-
assignments over the set APπ and by Θend

π = Θπ ∪ {endπ},
the set of assignments augmented with the corresponding
endπ symbol. Observe that the symbol endπ differs from the
empty assignment, setting every propositional variable false,
but rather mean that the trace is finished. Indeed, it will hold
that both endπ 6|= 〈pπ〉tt and endπ 6|= 〈¬pπ〉tt.

By Θend
V =

⋃
π∈V Θend

π we denote the union set of assign-
ments over the atomic propositions typed with π ∈ V . Note
that the sets of truth-assignments are pairwise disjoint. There-
fore, a truth-assignment in Θend

V can be uniquely identified
with a list of assignments in Θend

π , one for each π ∈ V . At
this point, every trace assignment tail(Π) of this form can
be regarded as a single trace over the set Θend

V , to which a
quantifier-free HyperLDLf formula can be interpreted as an
LDLf one. We have the following proposition.

2By length(Π) = maxπ∈V {|Π(π)|}we denote the length of the
longest trace mapped by Π.

Proposition 1. For a given quantifier-free HyperLDLf for-
mula ϕ and a trace assignment Π, it holds that Π |= ϕ if, and
only if, tail(Π) |= ϕ. 3

Hence, without loss of generality, we assume the trace as-
signments to map traces of the same length and then to regard
them as a single trace over Θend

V . This allows us to apply the
DFA construction for LDLf [De Giacomo and Vardi, 2013;
Brafman et al., 2018]:

Proposition 2. For every quantifier free HyperLDLf formula
ψ there exists an alternating finite automatonAψ of size poly-
nomial in |ψ| such that, for every trace assignment Π, it holds
that Π |= ψ if, and only if, Π ∈ L(Aψ).

Next we focus on regular logs. First, recall that the set
Log of valid traces over AP is described in terms of a DFA
D = 〈Σ, Q, q0, δ, F 〉 with Σ = 2AP, that is Log = L(D).
In our model-checking technique, we may need to read traces
that are tailed with the end symbol a finite but unbounded
number of times. This is done by amending the automaton
and defining Dtail = 〈Σ′, Q′, q0, δ

′, F ′〉, where Σ′ = Σ ∪
{end},Q′ = Q∪{acc, rej}, F ′ = F∪{acc} and δ′ extends
δ as follows:

• δ′(q, end) =

{
acc if q ∈ F
rej otherwise

;

• δ′(acc, σ) =

{
acc, if σ = end

rej otherwise
;

• δ′(rej, σ) = rej.
Intuitively, Dtail is as D until the end of trace is reached.

From that point on, it accepts only if both the trace is accepted
by D and the rest is made by an arbitrarily long sequence of
end symbols. The following trivially holds.

Proposition 3. For every DFAD, the automatonDtail is such
that L(Dtail) = {w; endn : w ∈ L(D) and n ∈ N}.

Finally we deal with the quantifiers of HyperLDLf . To
do so we make use of the classic notions of existential and
universal projection (see e.g. [David E. Muller and Paul E.
Schupp, 1995]).

Definition 4 (Automata projection). For a given automaton
A =〈Σ, Q, q0, δ, F 〉 such that Σ = 2X and P ⊆ X:

• If A is nondeterministic, then the existential projection
of A over P is the automaton A∃P = 〈Σ, Q, q0, δ

∃
P , F 〉

with δ∃P (q, σ) =
∨
σ′
P∈2P δ(q, σX\P ∪ σ′P) 4

• If A is universal, then the universal projection of A
over P is the automaton A∀P = 〈Σ, Q, q0, δ

∀
P , F 〉 where

δ∀P (q, σ) =
∧
σ′
P∈2P δ(q, σX\P ∪ σ′P)

Observe that, by using the Ndet and Univ, we can com-
pute the existential and universal projections of any kind of
automaton A. However this might require an exponential
blow-up in its size, as nondeterminization and universaliza-
tion are involved. For simplicity, we use the notation A∃P ,
in place of (Ndet(A))∃P , to denote the existential projection

3Note that the set Log is irrelevant for quantified free formulas,
as it just needs to include the traces mapped to in Π.

4Note that σ is a subset of X and that, for some Y ⊆ X , σY
.
=

σ ∩ Y denotes the projection over Y .

for every automaton. Analogously, A∀P denotes the univer-
sal projection for every automaton. Intuitively, the existential
projection A∃P accepts words w for which there exists a re-
placement of the variables in P that make the resulting word
w′ accepted by A. The universal projection, instead, A∀P ac-
cepts words w for which every possible replacement of the
variable evaluation in P is a word w′ accepted by A. This
is formalized in the following theorem which adapts a key re-
sult in [David E. Muller and Paul E. Schupp, 1995] for infinite
words to finite ones.
Theorem 1. For a given automaton A over the alphabet 2X

and a subset P ⊆ X , the two following propositions hold:
1. For every word w ∈ (2X)∗, w ∈ L(A∃P) iff there exists

a word w′ s.t. |w′| = |w|, w′(i)X\P = w(i)X\P for
every i < |w|, and w′ ∈ L(A).

2. For every word w ∈ (2X)∗, w ∈ L(A∀P) iff for every
word w′ such that |w′| = |w| and w′(i)X\P = w(i)X\P
for every i < |w|, it holds that w′ ∈ L(A).

For a given DFA D reading words over an alphabet Σ =
2AP, the π-typification of D, denoted Dπ is obtained by re-
naming every proposition p in AP to pπ . By APπ = {pπ :
p ∈ AP} we denote the set of typed variables from AP.

We are now ready to present our algorithm that, given a
Log DFA D and a HyperLDLf formula ϕ, constructs an au-
tomaton Automaton(D, ϕ) whose nonemptiness problem is
equivalent to check whether D |= ϕ. We first define Algo-
rithm 1 for generating the automaton Automaton(D, ϕ).

Algorithm 1 Automata construction Automaton(·, ·).
Input: HyperLDLf formula ϕ and Log DFA D.
Output: The automaton Automaton(D, ϕ).
if ϕ is quantifier free then

return Aϕ ∩
⋂
π∈free(ϕ)Dtail

π

if ϕ = ∃πϕ′ then
return (Automaton(D, ϕ′))∃APπ

if ϕ = ∀πϕ′ then
return (Automaton(D, ϕ′))∀APπ

Algorithm 1 recursively scans the formula on a top-to-
bottom fashion, handling its quantifiers one by one. At
each recursive call, it removes the outermost quantifier of
ϕ and computes the automata projection that corresponds to
the quantification modality. For an existential quantification
it applies an existential projection, whereas for a universal
quantification, it applies a universal one. Algorithm 1 makes
use of a polynomial operation: the typification of the alpha-
bet.
Theorem 2. For every HyperLDLf formula ϕ and a Log DFA
D it holds that L(Automaton(D, ϕ)) = {Π : V → L(D) :
D,Π, 0 |= ϕ}.

Proof sketch. By induction on the structure of ϕ, the base
case handles the quantifier free formulas, for which the al-
gorithm returns the DFA construction of Aϕ intersected with
a suitable number of copies of Dtail

APπ
to make sure the se-

lected traces are in the log. The inductive cases handle the
quantifiers by means of automata projection. The correctness
of such procedure follows from Theorem 1.

We can now solve model-checking ofD and ϕ by checking
the nonemptiness of Automaton(D, ϕ), see Algorithm 2.

Algorithm 2 Model checking HyperLDLf over Log DFAs.
Input: HyperLDLf formula ϕ and Log DFA D.
Output: YES, if D |= ϕ. NO, otherwise.
Compute A = Automaton(D, ϕ) by Alg. 1
if L(A) 6= ∅ then

return YES
else

return NO

The correctness of Algorithm 2 is a direct consequence of
Theorem 2. Algorithm 2 gives us an upper-bound on the com-
putational complexity of the problem.

Theorem 3. The model checking problem for a HyperLDLf
formula ϕ with quantifier alternation depth k over a Log DFA
D can be solved in k-EXPSPACE in both ϕ and D.

Proof sketch. For quantified free formulas ϕ, Algorithm 2
checks the nonemptiness of a polynomial sized alternating
automaton, whose complexity is PSPACE. For all the other
cases, at each automata projection, the size of the automaton
increases by one exponential, thus requiring an extra expo-
nent in space complexity to check for its nonemptiness.

This bound is tight since we prove a matching lower-bound
for the model-checking of both HyperLDLf and HyperLTLf .

Theorem 4. The model checking problem for a HyperLTLf
(and so HyperLDLf) formula ϕ with quantifier alternation
depth k over a Log DFA D is k-EXPSPACE-Hard.

Proof sketch. Through an encoding from Turing machines.
The proof adapts the argument for proving the lower-bound
of the satisfiability problem for QPTL in [Sistla et al., 1987].

We observe that our technique is based on automata con-
structions involving projection (existential projection) and
determinization and complementation (universal projection,
considering that ∀ϕ ≡ ¬∃¬ϕ). Note that these operations are
computationally dominated by determinization (projection is
polynomial as is complementation after deteminization). In
fact the alternation of quantifiers is directly related to the
number of required determinization steps (after projection).
This is what makes the tower of exponential directly related
to quantifier alternations. On the other hand there is evidence
that determinization in the case of regular nondeterministic
automata, while worst case exponential, is often polynomial
in practice for minimized DFAs [Tabakov and Vardi, 2005]
and this often gives rise to scalable algorithms in spite of
the worst case computational complexity [Zhu et al., 2017;
Zhu et al., 2020; Tabajara and Vardi, 2020]. For this reason
Algorithm 1 and 2 are indeed promising also in practice.

5 HyperLDLf and BPM
We illustrate how HyperLDLf can be used to capture a vari-
ety of interesting properties within Business Process Manage-
ment (BPM). An operational process consists of a collection

of activities that are executed in coordination [Dumas et al.,
2018]. The process is instantiated multiple times, and each
instance represents the execution of the process on a specific,
so-called case object (an order, a claim, . . .), moving it from
the initial state of the process to one of its final states. This
happens through the application of finitely many activities to
the case object, in agreement with the ordering constraints
imposed by the process control-flow. This setting perfectly
matches HyperLDLf , thanks to the ability of the logic to ex-
press hyper-properties over the finite traces induced by mul-
tiple process instances.

We fix a set A of activities. Given a trace π over A, we
assume that at each step, at most one activity is executed. The
case where no activity is executed, which we represent for
convenience using formula nopπ =

∧
a∈A ¬aπ , represents

an idle step in the execution. With this notions at hand, we
concentrate on three relevant aspects in the BPM spectrum.
Process Mining is a family of techniques used to get insights
about operational processes, and to improve processes based
on event data obtained from actual executions [van der Aalst
and others, 2011]. Process mining techniques range from
the discovery of process models from event data to check-
ing whether an event log conforms to a process model (either
manually crafted or automatically discovered from data). To
do so, they need to inspect and relate different traces that are
contained in the event log or that can be generated by the pro-
cess model (two notions that in our setting homogeneously
map to the HyperLDLf notion of regular log). Specifically,
several process mining techniques do not directly work with
raw traces, but rather use all the traces at hand to establish
behavioral relations between activities, in turn using them as
a succinct, abstract representation.

As a representative example, we consider here the ref-
erence ordering relations introduced in one of the seminal
works on process discovery [van der Aalst et al., 2004]. Such
ordering relations capture whether, according to the log, two
activities directly follow each other, are mutually exclusive,
or concurrent. For example, a log Log indicates that activities
a and b directly follow each other, that is, are in a strict se-
quencing (written a→Logb in [van der Aalst et al., 2004]), if:
(i) there exists a trace in Log where a is followed by b without
any other activity in between; (ii) in none of the traces from
Log the converse happens, that is, b is followed by a with-
out any other activity in between. While these two properties
separately quantify over traces, they have to holds simultane-
ously in Log to infer that a and b are in a strict sequencing,
hence calling for the hyper-features of HyperLDLf . Indeed,
we can check whether a→Logb by:

Log |= ∃π1∀π2 〈(trueπ1
)∗; aπ1

; (nopπ1
)∗; bπ1

〉tt
∧ [(trueπ2

)∗; bπ2
; (nopπ2

)∗; aπ2
]ff

The other ordering relations can be formalized analogously.
Instance-Spanning Constraints are behavioral constraints
that span across multiple instances of a given process, and
thus inherently require to related multiple traces at once. In
[Rinderle-Ma et al., 2016], a multitude of instance-spanning
constraints is collected from different application scenarios,
from logistics to healthcare and security. Interestingly, pre-
vious formalization attempts in this spectrum either failed

or required to combine all distinct traces in a single stream
equipping events with trace identifiers [Rinderle-Ma et al.,
2016], an approach that is not applicable when the (possi-
bly infinite) log to be considered is generated by a process
model. Differently from those attempts, thanks to its hyper-
features HyperLDLf has the direct ability to elegantly cap-
ture instance-spanning constraints.

Consider for example an activity propagation constraint
dictating that whenever an activity a occurs in a trace π of
the log, then b has to occur later on in all traces π′ re-
lated to π. By assuming that the fact that π is related to π′
is expressed through a domain-specific HyperLDLf formula
rel(π1, π2) having π and π′ as free variables, we can for-
malize in HyperLDLf this activity propagation constraint as:
∀π1, π2 rel(π1, π2) → G(aπ1

→ XF bπ2
). This formula can

be instantiated to capture that whenever a package shipped
via truck is detected as contaminated, then all the packages
traveling in the same truck need to be later inspected.
Alternative behaviors in a process. We finally consider the
use of HyperLDLf to express sophisticated properties on al-
ternative behaviors exhibited by a process that cannot be cap-
tured using branching-time logics. To illustrate this, we first
partition the activities A into observable activities AO (pub-
lic activities executed by or visible to external actors), and
unobservable activities AU (private activities). We want to
express a variety of outcome property capturing that when-
ever the process can produce a trace π1 satisfying a desired
behavioral pattern (a regular expression ρ) and leading to a
given outcome (a final, observable activity), then it is also
able to produce a different trace π2 that (i) mimics π1 by ex-
hibiting the same observable behavior, and (ii) satisfies the
same desired pattern ρ leading to an alternative outcome.

Intuitively, by “mimicking” we mean that two traces are
equal once all unobservable activities are projected out. Addi-
tionally, observable activities are not required to happen at the
same time: an observable activity happening in either trace is
replicated by the other with an arbitrary delay by adding un-
observable activities in between. Until this happens, however,
no other observable activity can be executed in either trace.
Note that the role of mimicking and of being mimicked can
be exchanged among π1 and π2 at each observable activity:
it can happen that an observable activity of π1 may be mim-
icked by π2 with a certain delay, and that the next observable
activity of π2 is then mimicked by π1 with some other delay.
This requirement cannot be captured by a simple branching-
time formula but is indeed a hyper property that requires the
ability to compare observable projections of traces.

This can be used, for example, to check that the process is
so that whenever a customer properly follows a sequence of
public steps required by a payment system, if the payment is
ultimately rejected then there is an alternative execution, with
the same public steps but with possibly different unobserv-
able ones (in type or number), where the payment is accepted.

To formalize this, we assume that in each step at most one
task is executed. Let ρπ be a regular expression over the set
A in π, and a, b ∈ AU respectively denote the actual and
alternative outcomes. Then property can be captured as:

∀π1∃π2(〈ρπ1〉a→ (〈ρπ2〉b ∧mimics(π1, π2)))

where mimics(π1, π2) formalizes that π2 mimics π1.
Since π1 and π2 may have a different length, we write
mimics(π1, π2) = |π1|≤ |π2|∧mimicsObs(π1, π2) ∨ |π1|>
|π2|∧mimicsObs(π2, π1), and then formalize this notion of
mimicking via mimicsObs(πs, πl), taking advantage from
the fact that πs is of equal or shorter length than πl. To
do so, we define a support formula: given a set T of trace
variables, unT =

∧
π∈T (nopπ ∨ (

∨
u∈AU

uπ)) captures
an unobservable step jointly performed in all traces from
T . Using this, we write ϕskip = (un{πs,πl})

∗ to indi-
cate an arbitrary sequence of possibly different unobservable
steps simultaneously performed by πs and πl. As a result,
mimicsObs(πs, πl) =〈∨

p∈AO

(ϕskip ; pπs ∧ pπl)
∨(ϕskip ; pπs ∧ un{πl};ϕskip ; pπl ∧ un{πs})
∨(ϕskip ; pπl ∧ un{πs};ϕskip ; pπs ∧ un{πl})

∗〉
〈ϕskip〉(finishedπs ∧ 〈(un{πl})∗〉finishedπl)

6 Related Work on Infinite Traces
To deal with multiple traces at once, a specific extension of
LTL, called HyperLTL, has been originally introduced in the
infinite traces setting. HyperLTL supports explicit quantifi-
cation over traces, as well as hyper-properties that inspect
and relate multiple traces at once [Clarkson et al., 2014].
In [Clarkson et al., 2014], HyperLTL and HyperCTL∗ are
introduced as extensions of LTL and CTL∗ to reason about
a set of (infinite) traces all at once. A hyper extension of
PDL, namely HyperPDL-∆, is considered in [Gutsfeld et al.,
2020]. The model-checking and satisfiability problems for
HyperLTL and these extensions have been investigated and
solved [Clarkson et al., 2014; Finkbeiner and Hahn, 2016;
Gutsfeld et al., 2020; Mascle and Zimmermann, 2020]. Their
solutions are based on automata on infinite objects (traces),
and provide a similar complexity hierarchy as the one in The-
orem 3. Our technique avoids the manipulation of automata
on infinite objects, sidestepping the difficulties of comple-
mentation of such automata, in favor of standard automata
for regular languages, which have better computational char-
acteristics in practice, see the discussion at the end of Sec-
tion 4.

7 Conclusion
We have introduced HyperLDLf a logic for expressing hyper
properties over logs, which are of particular interest, e.g., in
BPM. Specifically, we have proposed a technique for model-
checking of regular logs that takes full advantage of the re-
lationship between LTLf /LDLf and regular automata. For
this reason, such a technique promises to be easily imple-
mentable and effective in practice in spite of the high worst-
case complexity of the problem. It is also of interest to
study other problems such as synthesis of a log satisfying
certain HyperLDLf properties, which is related to satisfia-
bility, or synthesis of controller generating a log with desired
HyperLDLf properties, cfr. [Pnueli and Rosner, 1989].
Acknowledgments Research partially supported by the
ERC Advanced Grant WhiteMech (No. 834228) and by the
EU ICT-48 2020 project TAILOR (No. 952215).

References
[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.

McIlraith. Planning with temporally extended goals using
heuristic search. In ICAPS, pages 342–345. AAAI, 2006.

[Baier et al., 2007] Jorge A. Baier, Christian Fritz, and
Sheila A. McIlraith. Exploiting procedural domain control
knowledge in state-of-the-art planners. In ICAPS, pages
26–33. AAAI, 2007.

[Brafman et al., 2018] Ronen I. Brafman, Giuseppe De Gia-
como, and Fabio Patrizi. Ltlf/ldlf non-markovian rewards.
In AAAI, pages 1771–1778. AAAI Press, 2018.

[Chandra et al., 1981] Ashok K. Chandra, Dexter Kozen,
and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

[Clarkson et al., 2014] Michael R. Clarkson, Bernd
Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. Temporal logics for
hyperproperties. In ETAPS 2014, pages 265–284, 2014.

[David E. Muller and Paul E. Schupp, 1995] David E.
Muller and Paul E. Schupp. Simulating Alternating Tree
Automata by Nondeterministic Automata: New Results
and New Proofs of the Theorems of Rabin, McNaughton
and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

[Davis et al., 1994] Martin D. Davis, Ron Sigal, and
Elaine J. Weyuker. Computability, Complexity, and Lan-
guages (2nd Ed.): Fundamentals of Theoretical Computer
Science. Academic Press Professional, Inc., USA, 1994.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, pages 854–860, 2013.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Riccardo
De Masellis, Marco Grasso, Fabrizio Maria Maggi, and
Marco Montali. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In BPM, volume
8659 of LNCS, pages 1–17. Springer, 2014.

[Dumas et al., 2018] Marlon Dumas, Marcello La Rosa, Jan
Mendling, and Hajo A. Reijers. Fundamentals of Business
Process Management, Second Edition. Springer, 2018.

[Finkbeiner and Hahn, 2016] Bernd Finkbeiner and Christo-
pher Hahn. Deciding hyperproperties. In CONCUR, vol-
ume 59 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. Artif. Intell., 173(5-6):619–668, 2009.

[Gutsfeld et al., 2020] J. O. Gutsfeld, M. Müller-Olm, and
C. Ohrem. Propositional dynamic logic for hyperproper-
ties. In CONCUR # ”20”, 2020. To appear.

[Leiss, 1985] Ernst L. Leiss. Succinct Representation of
Regular Languages by Boolean Automata II. Theor. Com-
put. Sci., 38:133–136, 1985.

[Mascle and Zimmermann, 2020] Corto Mascle and Martin
Zimmermann. The keys to decidable hyperltl satisfiabil-
ity: Small models or very simple formulas. In CSL, vol-
ume 152 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[Pesic et al., 2007] Maja Pesic, Helen Schonenberg, and Wil
M. P. van der Aalst. DECLARE: full support for loosely-
structured processes. In EDOC, pages 287–300. IEEE
Computer Society, 2007.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the
Synthesis of a Reactive Module. In POPL’89, pages 179–
190. Association for Computing Machinery, 1989.

[Rinderle-Ma et al., 2016] Stefanie Rinderle-Ma, Manuel
Gall, Walid Fdhila, Jürgen Mangler, and Conrad In-
diono. Collecting examples for instance-spanning con-
straints. CoRR, abs/1603.01523, 2016.

[Sistla et al., 1987] A.P. Sistla, M.Y. Vardi, and P. Wolper.
The Complementation Problem for Büchi Automata with
Applications to Temporal Logic. TCS, 49:217–237, 1987.

[Tabajara and Vardi, 2020] Lucas M. Tabajara and Moshe Y.
Vardi. LTLf Synthesis under Partial Observability: From
Theory to Practice. In GandALF, volume 326 of EPTCS,
pages 1–17, 2020.

[Tabakov and Vardi, 2005] Deian Tabakov and Moshe Y.
Vardi. Experimental evaluation of classical automata con-
structions. In LPAR, volume 3835 of LNCS, pages 396–
411. Springer, 2005.

[Vaandrager, 2017] Frits W. Vaandrager. Model learning.
Commun. ACM, 60(2):86–95, 2017.

[van der Aalst and others, 2011] Wil M. P. van der Aalst
et al. Process mining manifesto. In Business Process Man-
agement Workshops (1), volume 99 of LNBIP, pages 169–
194. Springer, 2011.

[van der Aalst et al., 2004] Wil M. P. van der Aalst, Ton Wei-
jters, and Laura Maruster. Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data
Eng., 16(9):1128–1142, 2004.

[van der Aalst, 2011] Wil M. P. van der Aalst. Process Min-
ing - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer, 2011.

[Weidlich et al., 2011] Matthias Weidlich, Artem
Polyvyanyy, Nirmit Desai, Jan Mendling, and Math-
ias Weske. Process compliance analysis based on
behavioural profiles. Inf. Syst., 36(7):1009–1025, 2011.

[Zhu et al., 2017] Shufang Zhu, Lucas M. Tabajara, Jianwen
Li, Geguang Pu, and Moshe Y. Vardi. Symbolic LTLf syn-
thesis. In Carles Sierra, editor, IJCAI, pages 1362–1369.
ijcai.org, 2017.

[Zhu et al., 2020] Shufang Zhu, Giuseppe De Giacomo,
Geguang Pu, and Moshe Y. Vardi. LTLf synthesis with
fairness and stability assumptions. In AAAI, pages 3088–
3095. AAAI Press, 2020.

	Introduction
	Automata and Languages
	HyperLDLf over Finite Traces
	Model Checking HyperLDLf
	HyperLDLf and BPM
	Related Work on Infinite Traces
	Conclusion

