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Abstract

In this paper we study instance-level update in DL-Lites, a well-known description
logic that influenced the OWL 2 QL standard. Instance-level update regards insertions and
deletions in the ABox of an ontology. In particular, we focus on formula-based approaches
to instance-level update. We show that DL-Litey, which is well-known for enjoying first-
order rewritability of query answering, enjoys a first-order rewritability property also for
instance-level update. That is, every update can be reformulated into a set of insertion and
deletion instructions computable through a non-recursive Datalog program with negation.
Such a program is readily translatable into a first-order query over the ABox considered
as a database, and hence into SQL. By exploiting this result, we implement an update
component for DL-Lites-based systems and perform some experiments showing that the
approach works in practice.

1. Introduction

In this paper we study effective techniques to perform updates over DL-Lite ontologies. In
particular, we focus on DL-Lite4, which is the most expressive member of the DL-Lite family
of Description Logics (DLs) (Calvanese et al., 2007, 2013). DL-Lite, includes virtually all
constructs of the OWL 2 QL profile of the W3C OWL 2 standard. In addition, it includes
the most typical cardinality restrictions on the participation in roles of UML class diagrams,
i.e., any combination of mandatory participation and functional participation.

The crucial characteristic of DL-Lites ontologies is that they enable the so-called
ontology-based data access (Poggi et al., 2008). Indeed, DL-Litey enjoys first-order
rewritability of query answering, cf. Figure 1. That is, every (union of) conjunctive query
over a DL-Lites ontology can be rewritten into a first-order query to be evaluated over the
ABox only (i.e., the individual data) considered as a database. This property, on the one
hand, gives us a very low worst-case computational complexity bound w.r.t. data of the
query answering problem, namely AC? data complexity. On the other hand, it gives us a
very effective practical technique to deal with ontologies that include very large ABoxes
(i.e., a lot of individual data): perform the rewriting; transform the first-order query into
SQL, or SPARQL, depending on how data are stored; and perform the resulting query
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Figure 1: DL-Lite Query Rewriting

exploiting a data management engine to take advantage of all optimizations available for
these standard languages.

When we come to updates over ontologies, several approaches are available in the liter-
ature (Flouris et al., 2008; Liu et al., 2006; De Giacomo et al., 2009; Zhuang et al., 2016;
Kharlamov et al., 2013; Zheleznyakov et al., 2019). In particular, in this paper we are in-
terested in the so-called instance-level update: we add and delete (or erase) facts about
individuals only. Namely, we change the ABox (i.e., the extensional part of the ontology),
while we keep the TBox (i.e., the intensional part of the ontology) unchanged. This is the
most common form of update in practice, since it is essentially concerned with keeping the
intensional part of the ontology fixed, while changing freely the individual data (indeed, the
ABox changes are typically frequent whereas the TBox typically evolves slowly). Even in
this specific kind of updates, there are sophisticated semantic issues to consider in general.
One crucial issue is that, in practice, we need the result of the update to be still in the
same language as the original ontology, in order to keep using the same system (Liu et al.,
2006). The most well-known approaches that enjoy this property are the so-called formula-
based approaches (Fagin, Ullman, & Vardi, 1983; Ginsberg, 1986; Ginsberg & Smith, 1987;
Winslett, 1990), in which the update is seen as a change of the ontology axioms. Again,
several forms of formula-based instance-level updates have been considered (Stojanovic,
Maedche, Motik, & Stojanovic, 2002; Calvanese, Kharlamov, Nutt, & Zheleznyakov, 2010;
Lenzerini & Savo, 2011, 2012). For the DLs in the DL-Lite family, virtually all formula-based
proposals in the literature reduce to two main approaches: one in which we simply act on
the ABox assertions explicitly stated in the ontology, and another one in which we act also
on the ABox assertions that are not present but logically entailed through the use of the
TBox. Notice that, while the first approach is syntax-dependent (i.e., updating logically
equivalent ontologies that are stated through different assertions may give rise to logically
different resulting ABoxes), the second one is not. In both cases, the semantics have been
clarified, and ad-hoc tractable algorithms are available, although no software tools have
been developed yet.
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Figure 2: DL-Lite Update Rewriting

In this paper, we look again at the problem of instance-level formula-based update in
DL-Litey, and we establish a result that may turn out to be crucial to generate efficient
implementations: like query answering, updating an ontology is first-order rewritable. That
is, given an update specification, we can rewrite it into a set of addition and deletion instruc-
tions over the ABox which can be characterized as the result of a first-order query. Thus,
we can devise a technique based on rewriting for updates, which is analogous to the one for
query answering, cf. Figure 2. This means that (i) updating a DL-Lites ontology is in AC°
in data complexity,! and, (ii) updates can be processed by widely used data management
engines, e.g., based on SQL or SPARQL. We prove this result constructively, by showing
that every update can be reformulated into a non-recursive Datalog program with negation
that generates the set of insertion and deletion instructions to change the ABox while pre-
serving its consistency w.r.t. the TBox. Such a Datalog program can be further translated
into a first-order query over the ABox considered as a database. Exploiting this result, we
implement an update tool for DL-Lites-based systems and perform some experiments over
(a DL-Litey version of) the LUBM ontology (Guo, Pan, & Heflin, 2005) with increasing
ABox sizes, showing that the approach works in practice. While in the present paper the
first-order rewritability property for DL-Lites ontology updating is defined, proved, and
empirically evaluated for the first time, our work is related to research done in the con-
text of RDF triple-stores (Ahmeti et al., 2014, 2015), which focuses on RDFS (with class
disjunctions), a proper subset of DL-Litey.

The rest of the paper is organized as follows: after some preliminaries in Section 2,
in Section 3 we review formula-based approaches to instance-level ontology updates, in
particular in the case of DL-Litea. Then, in Section 4 and 5 we show how to express
updates in non-recursive Datalog, and hence show the first-order rewritability of instance-
level updates for DL-Lites. In Section 6, we demonstrate the practical applicability of the

1. When we say that update, which is not a decision problem, is in AC?, we actually refer to the associated
recognition problem (Abiteboul, Hull, & Vianu, 1995) of checking whether an ABox assertion belongs to
the result of the update.
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approach through a series of experiments over the LUBM ontology. Finally, we draw some
conclusions in Section 7.2

2. Preliminaries

In this section, we first briefly introduce Description Logic (DL) ontologies (Baader et al.,
2003), we provide the definition of DL-Litey, the specific DL considered in this work, and
finally we summarize some basic concepts and notation for Datalog.

2.1 Description Logic Ontologies

Description Logics allow one to represent the domain of interest in terms of concepts, de-
noting sets of objects, value-domains, denoting sets of values, attributes, denoting binary
relations between objects and values, and roles, denoting binary relations over objects. DL
expressions are built starting from an alphabet I' of symbols for atomic concepts, atomic
value-domains, atomic attributes, atomic roles, and object and value constants. We denote
by I'o the set of object constants, and by 'y the set of value constants. Complex expressions
are constructed starting from atomic elements, and applying suitable constructs.

If £ is a DL, then an L-ontology O (over I') is a pair (T,.A), where T, called TBor,
is a finite set of intensional assertions expressed in £, and A, called ABoz, is a finite set
of instance assertions, also called facts, (i.e., assertions on single individuals) expressed in
L. Different DLs allow for different kinds of concept, attribute, and role expressions, and
different kinds of TBox and ABox assertions over such expressions. In this paper we assume
that ABox assertions are always atomic, i.e., they correspond to ground atoms, and therefore
we omit to refer to £ when we talk about ABox assertions.

The semantics of a DL ontology is given in terms of First-Order (FO) interpretations, i.e.,
the interpretations structures of First-Order Logic (cf. (Baader et al., 2003)). We denote with
Mod(O) the set of models of O. A FO interpretation is a model of an ontology O = (T, A)
if it satisfies all assertions in 7 U A, where the definition of satisfaction depends on the kind
of expressions and assertions in the specific DL language in which O is specified. As usual,
an ontology O is said to be satisfiable if it admits at least one model, i.e., if Mod(O) # (),
and O is said to entail a FO sentence ¢, denoted O |= ¢, if ¢7 = true for all Z € Mod(O).

Let 7 be a TBox in £, and let A be an ABox. We say that A is T -consistent if (T ,.A)
is satisfiable, T-inconsistent otherwise. The T -closure of A with respect to 7, denoted
cl(A), is the set of all atomic ABox assertions that are formed using individuals in A, and
are entailed by (7,.A). Given two ABoxes A and A’, and a TBox 7, we say that A and
A’ are logically equivalent with respect to T if cl(A) = cly(A’). Note that if (7, .A) is an
L-ontology, then (T, clr(A)) is an L-ontology as well, and is logically equivalent to (7, .A),
i.e., Mod((T,A)) = Mod({T,clr(A))). Similarly, given a TBox T in L, we denote by cl(T)
the deductive closure of T, i.e., the set of all the TBox assertions in £ that follow from 7.

2. This paper is an extended version of the conference paper (De Giacomo, Oriol, Rosati, & Savo, 2016).
The main differences are the following: (i) we spell out the technique defined for obtaining the Datalog
program that computes the actual insertion and deletion instructions for the update; (ii) we add the
proofs of theorems; (iii) we illustrate the technique in details, using examples. As a result, the contents
of the whole paper have been revised and expanded.
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Sometimes, with a little abuse of notation, we write o € (T, A) to denote that the assertion
« belongs to 7 U A.

2.2 The Description Logic DL-Litey

The DL-Lite family (Calvanese et al., 2007) is a family of low-complexity DLs particularly
suited for dealing with ontologies with very large ABoxes. Such DLs constitute the basis of
OWL 2 QL, a tractable profile of OWL 2, the official ontology specification language of the
World Wide Web Consortium (W3C)3.

Here we focus on DL-Litey (Poggi et al., 2008), which is one of the most expressive
logics in the family. DL-Litey distinguishes concepts from value-domains, which denote sets
of (data) values, and roles from attributes, which denote binary relations between objects
and values. Concepts, roles, attributes, and value-domains in this DL are formed according
to the following syntax:

B— A | 3Q | §U) E — p(U)
Q—P| P R—Q | -Q
V—-U | U

where A, P, and U denote respectively an atomic concept name, an atomic role name and an
attribute name, 11, ..., T, are n pairwise disjoint unbounded value-domains (i.e. countably
infinite sets of values), and T p denotes the union of all domain values. Furthermore, P~
denotes the inverse of P, 3@Q) denotes the domain of @ (to denote the range of @), we use
3Q7), "=’ denotes negation, §(U) denotes the domain of U, i.e., the set of objects that U
relates to values, and p(U) denotes the range of U, i.e., the set of values related to objects
by U.
A DL-Litey TBox T contains intensional assertions of the form:

BCC (concept inclusion) ECT (value-domain inclusion)
QCR (role inclusion) UCV (attribute inclusion)
(funct Q)  (role functionality) (funct U)  (attribute functionality)

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a (gen-
eral) concept C'. Analogously for the other types of inclusion assertions. Inclusion assertions
that do not contain the symbol =’ in the right-hand side are called positive inclusions, while
those that do are called negative inclusions. Role and attribute functionality assertions are
used to impose that roles and attributes are actually functions respectively from objects to
objects and from objects to domain values. A TBox T in DL-Litey satisfies the following
condition: each role (resp., attribute) that occurs (in either direct or inverse direction) in a
functional assertion, is not specialized in T, i.e., it does not appear in the right-hand side
of assertions of the form Q C Q' (resp., U C U).

A DL-Litey ABox A is a finite set of assertions of the form A(a), P(a,b), and U(a,v),
where A, P, and U are as above, a and b are object constants in I'p, and v is a value
constant in I'y.

3. https://www.w3.org/TR/owl2-profiles/

1339



DE Giacomo, ORIOL, ROSATI, & SAvO

:Person

| | . :takesCourse .
exists exists

:Professor :Student <—DD<>— - - —O.—P :Course

:Associate

:FullProfessor
Professor

Figure 3: Graphical representation of the running example ontology (in Graphol).

The semantics of a DL-Litey KB is given in terms of FO interpretations Z = (A7, .1)
where A’ is the interpretation domain and - is the interpretation function. In particular,
A is a non-empty set partitioned into A‘I/ and A/, where AO] is the subset of Al used
to interpret object constants in I'p, and A‘I, is the subset of Al used to interpret data
values. In other words, for every ¢ € T, ¢! € AOI and for every f € 'y, fl € A‘I/. The
interpretation function -/ is defined as follows.

e For every c€T'p, ¢! € AOI, and for every f € I'y, f! € A%.

e For all di,ds e TpoUTy, d% #* d%, i.e., interpretations for DL-Litea follow the unique
name assumption (UNA).

e For all 1 <i < n, T; is a countably infinite set of values.

e The following equations are satisfied by -':

Al C AJ p! C AdxAd

@) = {ofIv.(o,v) U} (P = {(0,0)](d),0) € PT }
(3Q)" = {0]|3.(0,0) €Q"} (-Q)f = (Ag xAH\Q!
(-B) = Ad\B! Ut C Ad x AL

()" = {v|Jo.(o,v) U} () = (Ag x AP\UT

T! C ThL=Af (1<i<n) TiNT; = 0 (1<4,j<n,i#j)

An interpretation Z satisfies a concept (resp., role) inclusion assertion B T C' (resp.,
Q C R) if Bl C C' (resp., Q' C R'), and satisfies a role functionality assertion (funct Q)
if, for each o,0’,0” € A/, we have that (0,0') € Q! and (0,0”) € Q' implies o’ = 0.
The semantics for attribute and value-domain inclusion assertions, and for functionality
assertions over attributes can be defined analogously. Finally, Z satisfies the ABox assertions
A(a), P(a,b) and U(a,v) if af € AL, (a,b') € P! and (a!,v?) € U' respectively.

Example 1 We consider a slightly modified version of the LUBM ontology (Guo et al.,
2005) about the university domain. We use this ontology as running example throughout
the paper.
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We state that a Person can be either a Professor or a Student, where every Student takes
(takesCourse role) at least one Course, and every Professor can be either a FullProfessor or
an AssociateProfessor. Finally, we state that john is a FullProfessor and that bob is taking
the algebra course. The corresponding ontology O is:

T ={ Student C Person Professor C Person
FullProfessor C Professor AssociateProfessor C Professor
Student C —Professor FullProfessor C —AssociateProfessor
Student C JtakesCourse dtakesCourse™ C Course
JtakesCourse C Student }

A ={ FullProfessor(john), takesCourse(bob, algebra) }

Note that the ontology described above is in DL-Lites, and that we have enriched the
LUBM ontology with some concept disjointnesses, since this kind of assertions is missing in
the original version. Figure 3 depicts the TBox graphically, by using the Graphol ontology
visual language (Console et al., 2014). O

DL-Litey ontologies support a very effective way to perform reasoning and query an-
swering. Indeed, a notable characteristic of DL-Lite is that both satisfiability checking and
query answering for union of conjunctive queries are first-order rewritable (FO-rewritable),
i.e., rewritable in FOL. Intuitively, FO-rewritability of query answering of union of conjunc-
tive queries, as well as of satisfiability, captures the property that we can reduce both query
answering and satisfiability checking to evaluating a FO query over the ABox A considered
as a relational database. We remark that FO-rewritability of a reasoning problem that in-
volves the ABox of an ontology (such as satisfiability or query answering) is tightly related
to low data complexity of the problem. Indeed, since the evaluation of a FO query (i.e., an
SQL query without aggregation) over an ABox is in AC? in data complexity (Abiteboul
et al., 1995), the FO-rewritability of a problem has as the immediate consequence that the
problem is in ACY in data complexity.

2.3 Non-Recursive Datalog and FO Queries

We close this preliminary section by briefly summarizing the basic notions regarding syntax
and semantics of non-recursive Datalog (with negation).

A term 7 is either a wvariable or a constant. An atom is formed by a n-ary predicate p
together with n terms, i.e., p(71,...,7,). We may write p(7) for short. If all the terms 7 of
an atom are constants, we say that the atom is ground. A literal is either an atom p(7), a
negated atom not p(7), or an inequality 7; # 7;.

A predicate p is said to be derived (or intensional) if the evaluation of an atom p(7)
depends on some derivation rules, otherwise, it is said to be base (or extensional). A deriva-
tion rule is a rule of the form p(7,) < ¢(7), where p(7,) is an atom called the head of the
rule, and ¢(7) is a conjunction of literals called the body. Given several derivation rules with
predicate p in its head, p(7) is evaluated to true if and only if one of the bodies of such
derivation rules is evaluated to true.
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Example 2 We consider some Datalog derivation rules, regarding the university domain,
to exemplify the previous notions:

EmptyCourse (X) :- Course(X), not CourseWithStudents (X).
CourseWithStudents (X) :- Student(Y), takesCourse(Y, X).

Course, Student and takesCourse are base predicates whereas EmptyCourse and Course-
WithStudents are derived predicates. Intuitively, X is a Course WithStudents if some Student
Y takes X. On the contrary, X is an EmptyCourse if X is a Course without students.

All derivation rules must be safe, i.e., every variable appearing in the head or in a
negated or inequality literal of the body should also appear in a positive literal of the body.
Following our previous example, the derivation rule of EmptyCourse is safe because the
variable X, appearing both in the head of the rule and also inside a negated literal, appears
also in the positive literal Course. Similarly, Course WithStudents is also safe.

In order to remain in the realm of FOL, we require all the predicates to be non-recursive,
i.e., it should be possible to partition the set of predicates P into several pairwise disjoint
strata Py U...U Py, s.t. for each predicate p € P;, each predicate appearing in the derivation
rules of p should belong to a stratum P; with j < 7. Following our example, the predicates are
non-recursive since we can define the stratification: P, = {Course, Student, takesCourse},
Py = { CourseWithStudents}, P3s = { EmptyCourse}.

In Datalog, queries are defined by means of derived predicates. Non-recursive Datalog
queries, as the ones we consider in this paper, are known to be FO queries (i.e., equivalent
to relational algebra, and thus, expressible in SQL or SPARQL).

Example 3 The Course WithStudents predicate can be written as the following SQL query:

SELECT tC.course
FROM Student AS S
JOIN takesCourse AS tC ON (tC.student = S.student)

The EmptyCourse predicate can be written as an SQL query using the previous one as a
subquery:

SELECT C.course
FROM Course AS C
WHERE NOT EXISTS (
SELECT tC.course
FROM Student AS S
JOIN takesCourse AS tC ON (tC.student = S.student)
WHERE tC.course = C.course

In order to evaluate a Datalog query, we need some underlying data. This gives rise
to the concept of Datalog program. A Datalog program is a set of derivation rules (a.k.a.
queries) together with a set of facts, where a fact is a ground atom of a base predicate. The
set of facts represents the database contents, which determine the result of the queries (i.e.,
the extension of the derived predicates).
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Example 4 Consider the Datalog program formed by the Datalog derivation rules from
Example 2 together with the following facts:

Student (john) .

Course (algebra) .
takesCourse (john, algebra).
Course (chemistry).

Given this set of facts, running the Course WithStudents query retrieves algebra, and running
the EmptyCourse query retrieves chemistry.

3. Review of Instance-Level Update in DL-Lite, Ontologies

In this section, we review the main concepts and results on instance-level ontology update,
focusing on DL-Lite 4. Besides reasoning and querying, it is of interest to update the ontology
itself, and in particular to update the extensional data in it. This form of update is called
instance-level update and is the focus of the present paper.

In instance-level update we enforce the condition that the ontology resulting from the
application of the update operation has the same TBox as the original ontology, hence we
allow changes only in the ABox. Instance-level update is well motivated in information and
knowledge management systems where the extensional level tends to change frequently,
while the intensional level, which provides the representation of the domain of interest,
typically remains unchanged for longer periods of time. Indeed, in these systems, changes
at the extensional level correspond to changes in the data, while changes at the intensional
level corresponds to changes in the schema and are usually the result of an accurate manual
revision process.

In this paper, we concentrate on formula-based approaches which are computationally
more manageable and hence more appropriate when developing actual ontology-based sys-
tems (Calvanese et al., 2010; Lenzerini & Savo, 2011, 2012). We review two distinct formula-
based update semantics: the foundational semantics and coherence semantics (Géardenfors,
1990; Flouris & Plexousakis, 2005). Both these semantics generate an unique update result
when applied to DL-Lites ontologies. We also illustrate that a third variant, the careful se-
mantics, proposed in the literature (Calvanese et al., 2010), is inappropriate in our setting
due to its inherent non-uniqueness of the update result in the general case.

In the formula-based approaches to the update, the objects of change are sets of formu-
lae. That is, the result of the change is explicitly defined in terms of a formula, by resorting
to some minimality criterion with respect to the formula expressing the original ontology. An
update is a set U of basic update operations of two types: insertion operations, denoted by
i(A(0)) (resp., i(P(0,0"))), and deletion operations denoted by d(A(0)) (resp., d(P(o,0))),
where both A(0) and P(o,0’) are ABox assertions. Intuitively, updating a consistent ontol-
ogy with an insertion operation i(a), where « is an ABox assertion, means changing the
extensional level of the ontology in such a way that the ontology resulting from the update
is still consistent and entails the fact a. Conversely, updating a consistent ontology with a
deletion operation d(«), means changing the extensional level of the ontology in such a way
that the ontology resulting from the update is still consistent and does not entail the fact
.
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After adding new facts into an ontology, one may find that the revised ontology becomes
inconsistent. A strategy to overcome such a situation is to remove part of the original
ABox to the aim of preserving consistency. Similarly, if the goal is to update the ontology
by deleting a fact, we might need to retract several facts from the original ABox that
entailed it. When applying these modifications to the original ABox, one should respect
the minimal change principle, a widely accepted principle of the knowledge base evolution
literature (Eiter & Gottlob, 1992; Flouris & Plexousakis, 2005; Katsuno & Mendelzon,
1991). This principle states that the ontology resulting from the update should be as close
as possible to the original one. The term close has no single interpretation in literature about
ontology evolution. In updating an ontology at the instance level following the formula-based
approach, the goal becomes the preservation of the facts contained in the original ABox. In
what follows we formalize this idea.

Following (Fagin et al., 1983; Lenzerini & Savo, 2011, 2012), we say that an ABox A’
accomplishes the update of an ontology O with an update U if it satisfies all the insertion-
s/deletions in U while remaining as close as possible to the original ABox A. To formalize
this notion it is convenient to introduce two sets: the set A;7, which denotes the set of ABox
assertions appearing in ¢/ in insertion operations, and the set A;,, which denotes the set of
ABox assertions appearing in U in deletion operations.

Definition 1 Let O = (T, .A) be an ontology, U an update, and A’ be an ABox. A’ accom-
plishes the update of O with U if (i) A’ is T-consistent, (it) (T, A’) = B for each 3 € A,
and (iti) A’ = A" U A}, for some maximal subset A” of A.

It easy to see that, by definition, if such ABox A’ exists, not only satisfies (T, .A") £ 3,
but it also satisfies (7, A’) = o for each a € A} since A, C A’

The following proposition, which we prove formally below, provides necessary and suf-
ficient conditions over the update U to ensure the existence of an ABox that accomplishes
the update of an ontology O with U.

Proposition 1 Let O = (T, A) be an ontology and U be an update. An ABox A’ that
accomplishes the update of O with U exists if and only if U satisfies both the following
conditions:

i) Mod((T, A})) # 0, which means that the set of facts we are adding is consistent with
the TBox of the ontology.

i1) Ay ﬂclT(AZ,“) = (), which means that the update is not asking for deleting and inserting
the same knowledge at the same time.

Proof. (If part). We start showing that if I satisfies both condition (i) and (i7), then
there exists an ABox A’ accomplishing the update of O with U. Since Mod((T, A},)) # 0
then there always exists a maximal subset A" of A such that Mod((T,A” UA})) # 0.
Moreover, since A,, N clr(A) = 0, there always exists a maximal subset A" of A” such
that (7, A" UA}) = B for each 8 € Ay,. Clearly, the ABox A” U A;} accomplishes the
update of O with U according to Definition 1 since it satisfies all the three conditions
specified in the definition.
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(Only if part). Suppose there exists an ABox A’ that accomplishes the update of O
with &. We show that U satisfies both conditions (i) and (ii). We have that A" = A" U A},
for some subset A” of A. Since A’ is T-consistent, the .AZJ; is T-consistent too, and so U
satisfies condition (i). Moreover, since (T, A’) [ B8 for each 8 € A,,, then (T, A}) [~ B for
each 8 € A, , and so also condition (i7) is satisfied by U. .

Definition 2 Given a TBox 7 and an update U, we say that U is compatible with T if U
respects both the above conditions with respect to a TBox T.

When dealing with instance-level update, one has to decide on a key aspect: whether the
assertion explicitly given in the ABox have a special role which reflects a designer’s choice
(foundational approach) or if they are just used as a finite representation of the available ex-
tensional knowledge (coherence approach) (Flouris & Plexousakis, 2005; Gardenfors, 1990).
If we follow the “foundational approach” we do not need to preserve the facts that are en-
tailed by the ontology but explicitly asserted in the ABox. On the other hand, if we follow
the “coherence approach” the assertions in the ABox do not have a special role with respect
to the ABox assertions entailed by the ontology, and hence it is natural to preserve all such
entailed facts. We refer to (Géardenfors, 1990) for a detailed discussion.

The two approaches give rise to two distinct semantics of the update: the foundational
semantics and coherence semantics. As shown in the following, technically the coherence
semantics can be seen as an extension of the foundational semantics. For this reason, we
start our analysis by reviewing the foundational update semantics in DL-Lite4.

3.1 Foundational Update Semantics in DL-Litey

We start by observing that, in formula-based approaches to the update, the formula consti-
tuting the result of the application of an update is not unique in general (Eiter & Gottlob,
1992).

Example 5 Let O = (T, .A) be the following ontology (not in DL-Lite since it includes a
qualified existential restriction of the left-hand side of the TBox assertion):

T ={ SheadOf.Department C Chair }
A={ AssociateProfessor(john), headOf(john, depl), Department(depl) }

In words, the ontology O specifies that whoever is the head of a department is a chair,
and that john is an associate professor that is the head of the depl department. Note that
from the TBox assertion dheadOf.Department = Chair in 7 and the two ABox assertions
headOf(john, depl) and Department(depl) in A, it follows that john is a chair, i.e., O |
Chair(john). Suppose we want to change the ontology’s ABox by performing the update
U = {d(Chair(john))}, that is we want to change the ontology in such a way that the fact
that john is a chair is no longer entailed. To achieve this, we need to modify 4 by deleting
either headOf(john,depl) or Department(depl). Indeed, it is easy to verify that both the
following ABoxes accomplish the update of O with U.

Ay ={ AssociateProfessor(john), Department(depl) }
Ay ={ AssociateProfessor(john), headOf(john,depl) }
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Note that the ABox in which we delete both headOf(john, depl) and Department(depl) from
A does not accomplish the update of O with I since it does not respect the minimal change
principle. O

In literature, several ways to address this problem have been proposed. The most
straightforward one is inspired by the Set-Of-Theories (SOT) principle proposed by Gins-
berg (Ginsberg, 1986) and, independently, by Fagin, Ullman, and Vardi in (Fagin et al.,
1983). In such an principle the idea is considering, as result of the update, the set of on-
tologies built by using the ABoxes which accomplish the update. In order to obtain a single
ontology after the update, (Fagin et al., 1983) refines the SOT principle into the Cross-
Product approach. Roughly speaking, by adopting the Cross-Product approach the ABox
resulting from the update is formed by the disjunction of all the ABoxes accomplishing the
update, viewing each such ABox as the conjunction of its membership assertions. In the
Cross-Product approach we have no loss of information but the resulting ontology needs to
allow for disjunctions of ABoxes, which is typically not expressible in DL ontologies; more-
over, such a result of the update can be exponentially larger than the original one (Cadoli
et al., 1999).

A radical approach to the ontology update proposed to deal with the problem of the
multiplicity of the results is the one suggested by the WIDTIO ( When In Doubt Throw It
Out) principle (Ginsberg & Smith, 1987; Winslett, 1990), recently adopted in (Lenzerini
& Savo, 2011, 2012). The idea at the base of the WIDTIO principle consists in combining
the ontologies resulting from the SOT principle into a single one, by considering their
intersection. Following the WIDTIO principle, the result of the update is the ontology
formed by the TBox of the original ontology, and by the ABox computed as the intersection
of all the ABoxes accomplishing the update.

Another strategy, proposed in (Stojanovic et al., 2002), is to let the user choose which
ABox among the ones that accomplish the update should be considered as the result of the
update. (Calvanese et al., 2010) instead propose a pragmatic alternative that consists in
choosing non-deterministically such an ABox. Clearly, in both these approaches the result
of the update cannot be uniquely defined.

When it comes to choosing among multiple ABoxes accomplishing the update, apart
from the options described above, one could also resort to a preference-based approach
(also called entrenchment of beliefs) where the system computes the result of the update on
the basis of some preference criteria specified over the ontology. These preferences could be
predefined at design-time, or provided as guidelines at run-time by the user to the system.
Preferences could lead to a single result, or to multiple ones. See, e.g.,(Flouris et al., 2013)
for an application of this approach in a relevant setting.

Fortunately, when the TBox of the ontology is expressed in DL-Lites, the ABox ac-
complishing the update is unique, so all the approaches above collapse into the same one:
return the unique ABox. This uniqueness property was originally shown (for insertion only)
in (Calvanese et al., 2010). Here, we give a full proof for sake of completeness.

Proposition 2 Let O = (T, A) be a consistent DL-Litey ontology and U be an update
compatible with T. The ABox A’ accomplishing the update of O with U is unique.
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Proof. Let us first consider the case of insertion operations. We exploit the result given
in (Calvanese et al., 2010, Lemma 12) which states that if a DL-Litey ontology (7o, .Ao)
is unsatisfiable, then there exists a subset A; C Ag made of at most two facts such that
(To, A1) is unsatisfiable. As a consequence, considering our DL-Lite4 ontology (T,.A) and
the update U, if A’ = AU .AZJ; is T-inconsistent then there are two facts a € A and 3 € AZJ;
such that {«, 8} is T-inconsistent. In order to preserve consistency, the fact o cannot belong
to any ABox A’ accomplishing the update of O with U, since, according to Definition 1,
we have that .A; C A’. This means that, for each fact a € A, deciding if o belongs to the
ABox A’ accomplishing the update of @ with U can be done by considering « alone with
T and Ai;, i.e. without considering any other fact in A. Therefore, the computation of A’
is deterministic.

As for the case of deletion operations in U, we exploit again a property of DL-Lites
which directly follows from its syntactic structure: given a consistent DL-Lites4 ontology
(To, Ap) and a fact «, if (7p,.Ap) E «, then there exists a single fact 8 € Ap such that
(T,{B}) E a. As a consequence, in computing the ABox A" accomplishing the update of
O with U, we can consider each fact 8 € A individually and verify if there exists a fact
o € Aj; such that (T,{f}) = . If this is the case, § cannot belong to A’. So, also in this
case the computation of A’ is deterministic, which proves the proposition. "

As observed, all the approaches mentioned above differ in handling multiple update
results. However, when applied to a DL-Lites ontology, they all coincide, since there is at
most one ABox accomplishing the update (cf. Proposition 2). Hence we can simply define
the foundational semantics for instance-level update in DL-Lite4 ontologies as follows:

Definition 3 [Foundational Update Semantics] Let O = (T,.A) be a consistent DL-Lite
ontology and U be an update compatible with 7. The result of updating O with U, denoted

by O oU, is the ontology (T, A’), where A’ is the (unique) ABox accomplishing the update
of O with U.

Example 6 Consider the DL-Liteq ontology O = (T A) of Example 1 and the following
update request U = {i(AssociateProfessor(john)), d(Course(algebra))}. Since the update asks
to insert the assertion AssociateProfessor(john) stating that john is an associate professor,
it follows that, to preserve the consistency, in the updated ontology john can no longer
be a full professor. Moreover, since the update asks for retracting the fact that algebra
is a course, it follows from the TBox that no student can take it. Hence, the assertion
takesCourse(bob, algebra) has to be deleted. On the basis of the above considerations, it is
easy to verify that the ABox accomplishing the update of O with U is:

Apew ={  AssociateProfessor(john)  }

So, according to Definition 3, we have that O olUd = (T, Anew)- O

3.2 Coherence Update Semantics in DL-Litey

Observe that, in the foundational semantics, the update result is syntax dependent, which
means that it depends on the actual assertions in the original ABox, as the following example
shows.
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Example 7 Consider the ontology O = (T, A’), where T is the TBox given in Example 1
and A’ is as follows:

A" ={  FullProfessor(john), takesCourse(bob, algebra), Student(bob) }

Note that, since 7 | JtakesCourse [  Student, the ontology O’ is log-
ically equivalent to the ontology O of Example 1. Moreover, let U =
{i(AssociateProfessor(john)), d(Course(algebra))} be the update request given in Example 6.
We have that O" old = (T, A],.,,) where

Al ., ={ AssociateProfessor(john), Student(bob) }

which is clearly different from the ABox A, of Example 6. O

Depending on the specific scenario, and the particular application at hand, the syntax
dependency of foundational semantics might be considered inappropriate. Hence a syntax
independent semantics for update, following the “coherence approach”, is of interest. This
motivates the definition of the following update semantics for DL-Lite4 ontologies, in which
the object of the update is not the original ABox, but its deductive closure with respect to
the TBox (Calvanese et al., 2010; Lenzerini & Savo, 2011).

Definition 4 [Coherence Update Semantics] Let O = (T,.A) be a consistent DL-Lite
ontology and let U be an update compatible with 7. An ontology (T ,.A”) results from
updating O with U according to the coherence semantics, denoted by O e U, if (T, A”) is
logically equivalent to (7 ,.A’), where A’ is the (unique) ABox accomplishing the update of
(T, clr(A)) with U.

The following proposition states that the Coherence Update Semantics is indeed syntax
independent.

Proposition 3 Let O = (T, A) and O’ = (T, A’) be two consistent and logically equivalent
DL-Lites ontologies and let U be an update compatible with T. Then O eU and O' U are
logically equivalent.

Proof. The proof trivially follows from the fact that cly(A) = clr(A"). .

Example 8 Consider again the DL-Litey ontology O = (7, A) of Example 1 and the
update request U = {i(AssociateProfessor(john)), d(Course(algebra))} given in Example 6.
According to Definition 4, the result of updating of O with U is the ontology (T, A%..,)
where:

A, ={ AssociateProfessor(john), Professor(john), Person(john),
Student(bob), Person(bob) }

Indeed, it is easy to see that A}, is the ABox computed from the deductive closure of A with

respect to 7 by inserting the assertion AssociateProfessor(john) and deleting the assertions
Course(algebra), takesCourse(bob, algebra), and FullProfessor(john). As in Example 6, this last
assertion is removed as a consequence of the insertion request i(AssociateProfessor(john)).
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Now, consider the 0" = (T, A’) of Example 7 which is logically equivalent to O. Since
cr(A") = clr(A), it is easy to verify that the result of updating of @’ with U is the same
as the result of updating O with U. O

Observe that the ontology resulting from the update according the coherence semantics
is not unique (see Definition 4). Indeed, all updated ontologies (7, . A”), such that cly(A") =
cly(A’) satisfy the definition. However, all such ontologies are logically equivalent to each
other. Therefore, up to logical equivalence, we can still consider unique the result of the
update. For this reason, with a little abuse of terminology, in the rest of the paper, we
continue to refer to the result of the update also in case of the coherence semantics.

3.3 Careful Update Semantics in DL-Litey

An alternative formula-based update semantics, based on a variant of the coherence se-
mantics, is the Careful semantics (Calvanese et al., 2010). This was proposed with the
aim of preventing unexpected information. Formally, an ontology updated according to
the careful semantics should not entail a role constraint ¢ (i.e., a rule of the form
Jx(R(o,x)) A (x # c1) A=+ A (x # ¢p)), unless ¢ is entailed by the original ABox, or the
update itself. In practice, the careful update semantics encompasses deleting more ABox
assertions so that the final ontology does not entail any new role constraint ¢. However,
although the careful update semantics was thought to be uniquely defined (Calvanese et al.,
2010, Theorem 16), this is not the case in general, as the following example shows.

Example 9 Consider the DL-Lites ontology O = (T,.A) where:

T={ ALC 3Ry4, R4 C R, dR, E —dRy,
B C dRp, RpC R, dR, C ~3JR,,
C C 3Rc, Rc C R, dR; C —~3R,,

DC3Rp, RpLCR, IR, C-3R;, }
A={ A(o),B(o) }

and the update U = {i(C(0)),i(D(0))}. It is easy to see that the ABox A" = AU A} is T-
consistent and that it accomplishes the update of O with Y. Moreover, (T, A") = ¢, where
¢ = dz(R(o,z)) A (x # c1 A (x # ¢2))) (since the negative inclusions in 7 imply that in
every model Z of (T, A’) there are three distinct individuals d, dy, d. such that (o0, d,) € R%,
(0,dp) € RE, (0,d.) € RE). However, since neither (T, A) = ¢ nor (T, A}) = ¢, we have
that A’ does not accomplish the update of O with U carefully. Conversely, both the ABoxes
{A(0)}UA, and {B(0)} U A, accomplish the update of O with U carefully. This is because
the only role-constraining formula 3z(R(o,x)) A (x # c1)) that both entail with T, is also
entailed by (7, .AZJ; ). Hence, we have more than one ABox that accomplishes the update of
O with U carefully. O

Since the result of the update can be not unique in general, we consider the Careful
Semantics as inappropriate for our tasks in this paper.
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4. FO-Rewritability of Foundational Update Semantics

Now we are ready to present the main result of this paper: FO-rewritability of instance-
level update in DL-Litea. In doing this we provide a technique that can be exploited in
practice, which is based on non-recursive Datalog. We start by handling the foundational
semantics in this section, and then extend the technique to handle the coherence semantics
in the next section. For ease of presentation, from now on we assume that the TBox T
does not contain inclusions involving attributes and value-domains. However, all the results
presented in the next two sections can be immediately extended to TBoxes containing such
kinds of assertions.

From now on, given an ontology O = (T,.A), we denote by ABoz(O) the ABox A.
Therefore, if O ol = (T, A’), then ABoz(Oold) = A'.

We aim at characterizing the complexity of the following basic problem for the update
operation, under both the foundational and the coherence semantics: given a DL-Litey
ontology O = (T,.A), an update U, and an ABox assertion «, decide whether o belongs
to the ABox A’, where A" = ABox(O o U) under the foundational semantics, and A" =
ABox(O eU) under the coherence semantics.* We call such a problem the decision problem
of the update.

Given a DL-Lites ontology O = (T, .A), and an update U, we define a Datalog program
D that permits querying whether I/ is compatible with 7 and, in such a case, allows for
generating a set of insertion/deletion instructions that should be applied to A to accomplish
U according to the foundational update semantics given in Definition 3.

The Datalog program D contains a derived predicate incompatible_update(), together
with a pair of derived predicates ins_a/del_a for each concept/role A such that:

— incompatible_update() is true if and only if ¢ is not compatible with 7.
and, in case incompatible_update() is false,

— ins_a(0) is true if and only if the assertion A(0) was not in .4, but A(0) € ABoz(Oolf).
That is, ins_a captures the assertions of A that should be inserted into A to accomplish
the update U according to the foundational semantics.

— del_a(0) is true if and only if the assertion A(0) was in A, but A(0) ¢ ABox(O oU).
That is, del_a captures the assertions of A that should be deleted from A to accomplish
the update U according to the foundational semantics.

Intuitively, the main idea of the translation is to see each ABox assertion in .4, and
each update request in U as a Datalog fact. Then, we embed each assertion in the closure
of T into several Datalog derivation rules that define the incompatible_update(), ins_a(X),
del_a(X ) predicates. In the following, we detail how to obtain such a Datalog program D.
Then, we prove that the set of instructions generated by D are sound and complete w.r.t.
computing ABox(O oU).

4. As explained in the previous section, we can consider as unique the result of the update under the coher-
ence semantics: more precisely, in the following we assume that ABoxz(O eUf) is the ABox accomplishing
the update of (T, cl7(A)) with U.
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4.1 Encoding in Datalog

We want to compute incompatible_update(), ins_a( X ), del_a( X ) predicates. As said before,
if incompatible_update() is true, then the update is not compatible with the TBox and hence
cannot be applied. If, instead, incompatible_update() is false, then the program D returns all
the ins_a( X ), del_a( X ) predicates indicating the facts to be inserted and deleted from the
ABox respectively. Observe that, the set of ins_a( X ) and the set of del_a( X ) are guaranteed
to be disjoint, being the update compatible with the TBox.

All the assertions in A and operations in I/ can be seen as different facts in Datalog. In
particular:

— each assertion A(0) € A is seen as the fact a(0);
— each operation i(A(0)) € U is seen as the fact ins_a_request(o);
— each operation d(A(0)) € U is seen as the fact del_a_request(o).

Intuitively, a fact ins_a-request(o)/del_a-request(o) indicate that the ontology has re-
ceived the request to insert/delete the ABox assertion A(9).

The facts corresponding to A and U can directly lead to compute the ins_a(o)/del_a(0)
atoms as well as the atom incompatible_update(). In particular, we have the following rules:

— For each atomic concept A of the ontology O:

ins_a(X) :- ins_a_request(X), not a(X).
del_a(X) :- del_a_request(X), a(X).
incompatible_update() :- ins_a_request(X), del_a_request(X).

— For each atomic role P of the ontology O:

ins_p(X,Y) :- ins_p_request(X,Y), not p(X,Y).
del_p(X,Y) :- del_p_request(X,Y), p(X,Y).
incompatible_update() :- ins_p_request(X,Y), del_p_request(X,Y).

Note that incompatible_update() becomes true in case U requests for the insertion and
deletion of the same fact.

We deal with positive, negative, and functional assertions in the closure of T separately.
As for the positive inclusion assertions, intuitively, when an update requests for deleting
an assertion A(o), we have to delete any other assertion B(o) in the ABox that with the
TBox should entail A(0). Note that this is cannot be accomplished if there is a request for
inserting B(o0) in U. So if this happens incompatible_update() is set to true. For instance,
the positive inclusion assertion Professor C Person in our running example leads to have in
D the following rules:

del_prof(X) :- prof(X), del_person_request(X).
incompatible_update() :- ins_prof_request(X), del_person_request (X).

Notice that we use the closure of 7, instead of 7 itself in order to capture deletions that
are propagated along the concept and role hierarchies in the ontology. For instance, if in our
example we have U = {d(Person(john))}, the translated Datalog program D generates the
deletion of FullProfessor(john) because of the encoding of the assertion FullProfessor = Person
appearing in cl(T):
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del_full(X) :- full(X), del_person_request (X).

The Datalog program D is therefore specified as follows:

— For each positive inclusion assertion B C A in ¢l(7T), with A and B atomic concepts,
we have in D the rules:

del_b(X) :- b(X), del_a_request(X).
incompatible_update() :- ins_b_request(X), del_a_request(X).

— For each positive inclusion assertion in ¢l(7) of the form 3P T B, we have:

del_p(X,Y) :- p(X,Y), del_b_request(X).
incompatible_update() :- ins_p_request(X,Y), del_b_request (X).

— For each positive inclusion assertion in ¢/(7) of the form 3P~ C B, we have:

del_p(X,Y) :- p(X,Y), del_b_request(Y).
incompatible_update() :- ins_p_request(X,Y), del_b_request (U).

— For each positive inclusion assertion in ¢/(7) of the form R T P, we have:
del_r(X,Y) :- r(X,Y), del_p_request(X,Y).

incompatible_update() :- ins_r_request(X,Y), del_p_request(X,Y).

— For each positive inclusion assertion in ¢l(7) of the form R C P~ or R~ C P, we

have:
del_r(X,Y) :- r(X,Y), del_p_request(Y,X).
incompatible_update() :- ins_r_request(X,Y), del_p_request(Y,X).

We do not define rules for translating assertions of the form A C 3P, since the accomplish-
ment of the request of deleting an assertion P(o,0’) does not require to delete the assertion
A(o) from the ABox.

As for the negative inclusion assertions, consider the disjointness FullProfessor C
—AssociateProfessor in our ontology. if the update contains the insertion request
i(AssociateProfessor(john)) when FullProfessor(john) is in the ABox, we have to delete
FullProfessor(john), otherwise the ABox resulting from the update will be inconsistent with
respect to the TBox.

del_full(X) :- b(X), ins_associate_request (X).

del_associate(X) :- a(X), ins_full_request(X).
incompatible_update () :-ins_full_request(X),ins_associate_request (X).

The last rule is used for managing the case where the update requests to insert both
FullProfessor(john) and AssociateProfessor(john). Indeed, in this case we have a contradiction
and thus, incompatible_update() becomes true.

By following the above intuition, each negative inclusion assertion in the closure of 7T is
encoded in the Datalog program D as follows:

— For each negative inclusion assertion B C —A in ¢l(7), we have:
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del_b(X) :- b(X), ins_a_request (X).
del_a(X) :- a(X), ins_b_request(X).
incompatible_update() :- ins_a_request(X), ins_b_request (X).

— For each negative inclusion assertion B C =3P and 3P C =B in cl(7), we have:

del_b(X) :- b(X), ins_p_request(X,Y).
del_p(X,Y) :- p(X,Y), ins_b_request(X).
incompatible_update() :- ins_b_request(X), ins_p_request(X,Y).

— For each negative inclusion assertion B C =3P~ and 3P~ C =B in (7T ), we have:

del_b(X) :- b(X), ins_p_request(Y,X).
del_p(X,Y) :- p(X,Y), ins_b_request(Y).
incompatible_update() :- ins_b_request(X), ins_p_request(Y,X).

— For each negative inclusion assertion R C =P in ¢l(7), we have:

del_r(X,Y) :- r(X,Y), ins_p_request(X,Y).
del_p(X,Y) :- p(X,Y), ins_r_request(X,Y).
incompatible_update() :- ins_p_request(X,Y), ins_r_request (X,Y).

— For each negative inclusion assertion R C =P~ in ¢l(7), we have:

del_r(X,Y) :- r(X,Y), ins_p_request(Y,X).
del_p(X,Y) :- p(X,Y), ins_r_request(Y,X).
incompatible_update() :- ins_p_request(X,Y), ins_r_request(Y,X).

Again, note that since we are considering the closure of T, the rules are able to capture
deletions due to negative inclusion assertions generated by entailment. For instance, if we
try to update the ontology of Example 1 with the request i(AssociateProfessor(bob)), D
generates the deletion of takesCourse(bob, algebra) because of the rule del takes(X,Y) :-
takes(X,Y), ins_associate_request(X) obtained when translating the negative inclusion
assertion JtakesCourse C —AssociateProfessor in cl(7).

Finally, in order to deal with role functionality assertions, we use the inequality built-
in predicate to check whether a requested role assertion insertion is going to violate the
functional assertion,® and proceed as follows:

— For each role functionality assertion (funct P) in 7, we have:

del_p(X,Y) :- p(X,Y), ins_p_request(X,Z), Y<>Z.
incompatible_update() :- ins_p_request(X,Y),ins_p_request(X,Z),
Y<>Z.

— For each role functionality assertion (funct P7) in 7, we have:

del_p(X,Y) :- p(X,Y), ins_p_request(Z,Y), X<>Z.
incompatible_update() :- ins_p_request(X,Y),ins_p_request(Z,Y),
X<>Z.

5. We remind the reader that DL-Litea enforces the unique name assumption (UNA), cf. Section 2.
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Note that since in DL-Litey no new functionality assertions can be derived by reasoning
over the TBox (Calvanese et al., 2006), we can consider T instead of its closure ¢l(7).

Let us illustrate the construction above with an example.

Example 10 Consider again the DL-Lite4 ontology O = (T A) given in Example 1 and
the update request U = {i(AssociateProfessor(john)), d(Course(algebra))} of Example 6.
The Datalog program D contains the following rules:

%ABox assertions

full(john).

takes (bob, algebra).

%Update requests
ins_associate_request (john).
del_course_request (algebra).

ins_associate(X) :- ins_associate_request(X), not associate(X). hri
del_associate(X) :- del_associate_request(X), associate(X).
incompatible_update() :- ins_associate_request(X), del_associate_request(X).

ins_course(X) :- ins_course_request(X), not course(X).
del_course(X) :- del_course_request(X), course(X).
incompatible_update() :- ins_course_request(X), del_course_request(X).

del_takes(X,Y) :- takes(X,Y), del_student_request(X).

del_takes(X,Y) :- takes(X,Y), del_course_request(Y). hr2
incompatible_update() :- ins_takes_request(X,Y), del_student_request (X).
incompatible_update() :- ins_takes_request(X,Y), del_course_request(Y).

del_full(X) :- full(X), ins_associate_request(X). %hr3
del_associate(X) :- associate(X), ins_full_request (X).

Since in U we have the update request i(AssociateProfessor(john)), the rule r1 in D generates
ins_associate(john), and, since we have that FullProfessor C —AssociateProfessor € cl(T),
which leads to have rule r3 in D, we compute del full(john). For accomplishing the
update request d(Course(algebra)) in U, we have del_takes(bob,algebra) from the rule
r2. The latter is in D because of the assertion JtakesCourse™ T Course in /(7). At the end,
D will compute to the following result:

ins_associate (john).

del_takes (bob,algebra).
del_full (john).

which leads to compute the ABox A, = { AssociateProfessor(john) } of Example 6. O

4.2 Results

In the Datalog program the atom incompatible_update() is used to detect if an update is
compatible with the TBox or not. The following result shows that such check is correctly
performed by our procedure.

1354



INSTANCE-LEVEL UPDATE IN DL-LITE ONTOLOGIES THROUGH FIRST-ORDER REWRITING

Theorem 1 Let (T,.A) be a consistent DL-Litey ontology and U be an update, and let D
be the corresponding Datalog program defined as above (Section 4.1). U is not compatible
with T if and only if incompatible update() is true in D.

Proof. (If part.) We start by showing that if incompatible_update() is true in D, then
U is not compatible with 7. incompatible update() can be true only because of
the facts generated in D from the translation of the update U, together with: (i) one
of the rules incompatible update():- ins_a request(X), del_a request(X) (resp.,
incompatible update() :-ins_r request(X,Y), del r request(X,Y)) defined in D for
each concept A (resp., role R); (ii) a rule incompatible update() :- ins_b_request(X),
del_a_request(X) (resp., incompatible_update() :-ins_p_request(X,Y),
del_r_request(X,Y)) defined in D for each concept inclusion assertion B C A (resp., role
inclusion assertion P T R) in ¢l(T); (i7i) one of the rules generated by translating the
negative inclusion assertions and the functionality assertions in ¢l(7). The rules generated
in the first two cases are true only if A, NA}, # 0 and A, Nelr(A}) # 0, respectively. The
rules of the third case are true only if Mod(({T,.A})) = 0. Thus, if incompatible update ()
is true, U is not compatible with 7.

(Only if part.) Now, we show that if ¢/ is not compatible with 7, then incompati-
ble_update() is true in D. U can be not compatible with 7 because (i) Mod((T,A}})) # 0;
or (i1) Ay, Nelr(A}) = 0. About (i), the following two cases are possible. There are two facts
r(0,0') and r(o,0") in A}, which violate the functionality of the role r specified 7. In this
case, since incompatible update() :- ins_r request(X,Y),ins_r request(X,Z),Y<>Z
is in D, then incompatible update() will be true. In the second case, we have two
facts A(0) and B(o) such that A T —B € (7). Also in this case, since we have
that incompatible update() :- ins_a request(X), ins b request(X) is in D, then
incompatible_update() will be true. About (i), since for each assertion B C A in cl(T)
we have that incompatible_update() :- ins_b_request(X), del_a request(X) isin D,
then it follows that if A;, Ncly(A}) # 0, then incompatible_update () will be true in D. u

If incompatible_update() is false in D, then we can compute all the insertion and dele-
tion required to perform the update using the Datalog program D. We now show that this
way to proceed is sound and complete. We start by showing soundness, i.e., that for ev-
ery ABox assertion A(0) that should be inserted/deleted according to D, A(o) should be
inserted/deleted according to the foundational update semantics.

Theorem 2 (Soundness) Let (T,A) be a consistent DL-Liteg ontology and U be an
update compatible with T, and let D be the corresponding Datalog program defined as
above (Section 4.1). For each concept/role A, if ins_a(o) is true in D, then, A(o) €
ABox({T,A) oU) \ A, and if del_a(o) is true in D, then, A(o) € A\ ABox((T,A)olU).

Proof. If the fact ins_a(o) (resp., ins r(o,0’)) is true in D, it is because of the
rule ins_a(X) :- ins_a request(X), not a(X) generated when translating U (resp.,
ins r(X,Y) :- ins_r_request(X,Y), not r(X,Y)), which can only be true if A(o) ¢ A
(resp., R(0,0') € A), and A(0) (resp., R(o,0')) is in A}, thus A(o) (resp., R(o0,0')) belongs
to ABoz((T, Ay olU)\ A.

If del_a(o) (resp., del.r(o,0’)) is true in D, it can only be because of: (i) the
rule del_a(X) :- del._a_request(X), a(X) (resp.,del r(X,Y) :- del.r request(X,Y),
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r(X,Y)) generated when translating U, where in such case we have A(o0) (resp., R(0.0"))
belongs to both A and A;,, thus A(o) (resp., R(0,0")) belongs to A\ ABox((T,A) o U);
or (i7) a rule generated when translating a positive inclusion assertion in ¢l(7), where in
such case we have that A(6) € A and that for some B(0) € A;,, (T,{A(0)}) = B(0), thus,
A(0) € A\ ABox({T, Ay oUd) (where A(0) and B(0) are denoting concepts or roles); or (iii)
a rule generated when translating a negative inclusion assertion or a functionality assertion
in ¢l(T) where in such case we have A(0) € A and Mod((T, A, U{A(0)})) = 0, and thus,
A(o) € A\ ABox({T,A)oU4). .

Now, we turn to completeness, i.e., that any insertion/deletion assertion of A(o) that
should be applied according to the foundational update semantics is also generated in D.
We first need to better characterize which atoms are inserted and deleted according to the
update semantics for an update . As for the atoms to be inserted, these are those in .AZ;
(i.e., the assertions requested to be inserted in /) that are not already in A. As for the atoms
to be deleted, we need to suitably close A, (i.e., the assertions requested to be deleted in
U) so as to have A\ ABox((T,A) oU). To do so, we can use the saturation procedure in
Algorithm 1.

We now prove that ComputeDeleted Assertions(T, A,U) actually returns the assertions
that must be deleted from A to compute the update. To this aim, we state the following
lemmas, which involve the algorithms for satisfiability and query answering for DL-Lites
defined in (Calvanese et al., 2009). The proof of these lemmas is immediate.

Lemma 1 Let (T, A) be a consistent DL-Lite4 ontology, U be an update compatible with T,
A= AL U(A\ Agar), and let Satisfiable be the algorithm defined in Sec. 4.8 of (Calvanese
et al., 2009). Then, Satisfiable((T,A’)) returns true.

Lemma 2 Let (T, A) be a consistent DL-Lites ontology, U be an update compatible with T,
ae A, A=A\ Aans, and let Answer be the algorithm defined in Sec. 5.3 of (Calvanese
et al., 2009). Then, Answer(c, (T, A")) returns false.

The above lemmas, together with the correctness of the algorithms for satisfiability and
query answering in (Calvanese et al., 2009), allow us to prove the correctness of Algorithm 1.

Lemma 3 (Correctness of Algorithm 1) Let (T,.A) be a consistent DL-Lites ontology
and U be an update compatible with T. Then ComputeDeleted Assertions(T, A,U) = A\
ABox((T,A) olU).

Proof. The soundness of the algorithm is trivial. As regards the completeness, from Lemma 1
and from Lemma 4.13 of (Calvanese et al., 2009) it follows that the set Agq¢ computed by
ComputeDeleted Assertions(T, A,U) contains all the facts in A that are in conflict with
Aj. Moreover, from Lemma 2 and from Theorem 5.14 of (Calvanese et al., 2009) it follows
that the set A,y,s computed by ComputeDeleted Assertions(T, A,U) contains all the facts
in A that, together with the TBox 7T, entail any fact in A;,. .

By exploiting the above result we can show completeness of our Datalog-based proce-
dure.
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Algorithm 1 ComputeDeleted Assertions(7, A, U)

Input: DL-Litey TBox T, ABox A, update U compatible with 7
Output: the ABox Agq: U Agns

begin
-Asat = 07
Aans = (D;

for each C(a) € A}, do begin
for each D(a) € A such that T |= C C =D do Asur = Asar U{D(a)};
for each R(a,z) € A such that 7 = C T —3R do Asg = Asar U{R(a,x)};
for each R(z,a) € A such that T = C C -3R™ do Asat = Asar U{R(z,0a)}
end;
for each R(a,b) € A, do begin
for each S(a,b) € A such that T = R C =S do Asqr = Asar U {S(a,b)};
for each S(b,a) € A such that T = RC =S~ do Aser = Asar U {S(b,a)};
for each C(a) € A such that T = IR C —C do Aget = Asar U {C(a)};
for each C(b) € A such that T | IR~ C =C do Asat = Asa: U{C (D) };
for each S(a,z) € A such that 7 = 3R C =35 do Aser = Asar U {S(a,2)};
for each S(z,a) € A such that 7T 3R C =35~ do At = Asat U{S(z,a)};
for each S(b,z) € A such that 7 | IR~ C —35 do Aget = Asar U {S(b,2)};
for each S(z,b) € A such that T = 3R~ C —-3S~ do Aset = Asar U {S(z,0)}
for each R(a,c) € A such that b# c and T |= (funct R) do Asqr = Agar U{R(a,c)};
for each R(c,b) € A such that a # c and T |= (funct R™) do Aset = Asar U{R(c,b)};
end;
for each C(a) € A
for each D(a) € A such that 7 = D C C do Agps = Aans U{D(a)};
for each R(a,z) € A such that T = 3R C C do Auns = Aans U {R(a,z)};
for each R(z,a) € A such that T |=3R™ C C do Agns = Agns U{R(z,a)}
end;
for each R(a,b) € A;, do begin
for each S(a,b) € A such that 7 =S C R do Auns = Aans U {S(a,d)};
for each S(b,a) € A such that T =S C R~ do Auns = Aans U{S(b,a)}
end;
return Agq; U Agns

do begin

end

Theorem 3 (Completeness) Let (T, .A) be a consistent DL-Lites ontology, U be an up-
date compatible with T, and let D be the corresponding Datalog program defined as above

(Section 4.1). Then, for each concept/role A, if A(0) € ABox((T,A)olU)\ A, then, ins_a(o)

is true in D, and if A(o) € A\ ABox((T,A) olU), then, del_a(o) is true in D.

Proof. Since U is compatible with 7, then ABox((T, A)olUd)\ A = A}, \ A, and by definition

of D, for each fact A() in A, we have that ins_a(X)

:- ins_a request(X), not a(X)

is in D, so, for each concept/role A, if A(0) € A, \ A, ins_a(0) is true in D. Finally, by

Lemma 3 we have that for every assertion deleted from A there is a corresponding deletion

instruction provided by D. Indeed, for each concept/role A, if A(0) belongs to the ABox

returned by ComputeDeletedAssertions(T, A,U), then del_a(o) is true in D.
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The above results show that by means of the Datalog program D, when paired with
facts in A and U, we are able to compute all the facts that must be inserted and deleted
from the ABox A to perform the update. It is easy to see that D is polynomial in the size
of the TBox 7 and independent of the data in the ABox A and in the update . More
importantly, given the non-recursive form of D, we have that each ins_a(Z)/del_a(T) over
D can be translated into a FO query. This means that, given an ontology O = (T, .A) and
update U, from the TBox 7 only, we can build an SQL/SPARQL query that evaluated
over the ABox A and the update U allows for instantiating all the insertion and deletion
instructions needed to compute the ABox of the update O old. Hence, we have the following
result.

Theorem 4 (FO-Rewritability) The decision problem of the update under the founda-
tional semantics for DL-Lites ontologies is FO-rewritable and in AC® in data complexity.

Proof. The proof directly follows from Theorem 1, Theorem 6, Theorem 3, and from the fact
that the evaluation of a FO query over an ABox is in AC? in data complexity (Abiteboul
et al., 1995). n

5. FO-Rewritability of Coherence Update Semantics

The previous Datalog program D generates the set of insertions/deletions that should be
applied to an ABox A to accomplish an update U according to the foundational update
semantics. In this section we show how to modify such Datalog program to deal with the
coherence update semantics given in Definition 4.

Briefly, to accomplish the coherence update semantics, we need to generate more inser-
tion instructions in D. This is because, in the coherence update semantics, for computing
the update we need to consider the T -closure of the original ABox, instead of the ABox
itself. For instance, if in our running example we ask for deleting Course(algebra), then, ac-
cording to the coherence semantics, besides deleting the assertion takesCourse(bob, algebra),
we should also apply some insertions for preserving the facts Student(bob) and Person(bob),
since both are entailed by the original ontology and do not contradict any update operations.

Thus, in practice, we need to extend our Datalog program D to:

(1) additionally capture those assertions A(o) entailed by the TBox and assertions B(0)
that are requested for deletion, and

(2) derive their insertion in case they are not in conflict with respect to the TBox with
the assertions in Ay .

Intuitively, we do (1) by considering an additional derived predicate ins_a_closure for each
concept/role A; then, we use this new predicate to define new derivation rules for ins_a in
case they do not get in conflict with any assertion in A, thus accomplishing (2).

In the following, we first define how we obtain these new derivation rules, and then we
prove that the insertion/deletion instructions generated by this extended Datalog program
D* are sound and complete with respect to the coherence update semantics.
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5.1 Encoding in Datalog

According to the coherence semantics we have to preserve all the facts that are originally
entailed by the ontology and that do not conflict with the update. For instance, if our
running example the update requests for deleting the fact FullProfessor(john), we need to
insert Professor(john) because of the assertion FullProfessor C Professor in 7. Clearly, such
closure insertion would be not necessary in case Professor(john) is already in the ABox, or
if there is a request for its insertion, or if it is requested for deletion (either Professor(john)
itself or its super-concept Person(john)). By following this intuition, for the positive inclusion
assertion FullProfessor C Professor in 7, we need to define the following rules in D*:

ins_prof_closure(X) :- del_full(X), not prof(X),
not ins_prof_request (X),
not del_prof_request (X),
not del_person_request (X).

We define similar rules for role positive inclusion assertions and concept positive inclusion
assertions in which the left-hand side uses the 3 constructor.
Given a DL-Litey TBox T we extend the Datalog program D as follows:

— For each positive inclusion assertion B C A in ¢l (7)), where A is an atomic concept,
let Ay, ..., Ay, be all the atomic concepts such that A C A; € cly(T), then we have
in D* the rules:

ins_a_closure(X) :- del_b(X), not a(X), not ins_a_request(X),
not del_a_request(X), not del_al_request(X),
., not del_am_request (X).

— For each positive inclusion assertion 3P C A in ¢l (7T ), where A is an atomic concept,
let Ay, ..., Ay, be all the atomic concepts such that A C A; € ¢l (T), then we have:

ins_a_closure(X) :- del_P(X,Y), not a(X), not ins_a_request (X),
not del_a_request(X), not del_al_request(X),
., not del_am_request(X).

— For each positive inclusion assertion 3P~ C A in ¢l (T ), where A is an atomic concept,
let Ay, ..., Ay, be all the atomic concepts such that A C A; € ¢l (T), then we have:

ins_a_closure(X) :- del_P(Y,X), not a(X), not ins_a_request (X),
not del_a_request(X), not del_al_request(X),
., not del_am_request (X).

— For each positive inclusion assertion P C R in ¢l (7 ), where R is an atomic role, let
Ry, ..., Ry, be all the atomic roles such that R C R; € ¢l (T), and let Sy, ..., S, be
all the atomic roles such that R C S, € ¢l7(7T) then we have:

ins_r_closure(X,Y) :- del_p(X,Y), not r(X,Y),
not ins_r_request(X,Y), not del_r_request(X,Y),
not del_rl_request(X,Y),..., not del_rm_request(X,Y),
not del_sl_request(Y,X),..., not del_sn_request(Y,X).
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— For each positive inclusion assertion P C R~ in cly(7T), where R is an atomic role,
let Ry, ..., R, be all the atomic roles such that R C R; € cly(T), and let Sy, ..., Sy
be all the atomic roles such that R C S;” € cl7(T) then we have:

ins_r_closure(X,Y) :- del_p(Y,X), not r(X,Y),
not ins_r_request(X,Y), not del_r_request(X,Y),
not del_rl_request(X,Y),..., not del_rm_request(X,Y),
not del_sl_request(Y,X),..., not del_sn_request(Y,X).

Once we have defined the predicates ins_a_closure(Z), we use them for defining new
insertions in case they do not get in conflict with the assertions in AZ{'. To do so, we define
in D* the following rules:

— For each atomic concept A, let By,..., B, be all the atomic concepts such that A C
=B is in cl7(T), let Pi,..., P, be all the atomic roles such that A C —3F; is in
clr(T), and let Ry, ..., R, be all the atomic roles such that A C =3R; is in cl7(T),
then we have:

ins_a(X) :- ins_a_closure (X),
not ins_bl_request(X),..., not ins_bn_request(X),
not ins_pl_request(X,Y1),..., not ins_pm_request(X,Ym),
not ins_rl_request(Y1,X),..., not ins_rw_request(Yw,X).

— For each atomic role P, let Rq,..., R, be all the atomic roles such that P C —R; is
in ¢l (T), let Si,..., Sy be all the atomic roles such that P C —=3S; is in clr(T),
let T, ..., T, be all the atomic roles such that 3P C —3T; is in ¢l (T), let Q1,...,Q
be all the atomic roles such that 3P C =3Q; is in cl7(T), let Wy, ..., W}, be all the
atomic roles such that 3P~ T —3W; is in cly(T), let Uy,..., Uy be all the atomic
roles such that 3P~ C —3U; is in ¢l7(7T), let Ay,..., A; be all the atomic concepts
such that 3P C —A; is in cl7(T), and let By, ..., Bs be all the atomic concepts such
that 3P~ C —B; is in ¢l (T), then we have:

ins_P(X,Y) :- ins_p_closure(X,Y),

not ins_rl_request(X,Y),..., not ins_rn_request(X,Y),
not ins_sl_request(Y,X),..., not ins_sm_request(X,Y),
not ins_tl_request(X,Y1),..., not ins_tv_request(X,Yv),
not ins_ql_request(Y1,X),..., not ins_ql_request(Yl,X),
not ins_wl_request(Y,X1),..., not ins_wk_request(Y,Xk),
not ins_ul_request(X1,Y),..., not ins_qgh_request(Xh,Y),
not ins_al_request(X),..., not ins_aj_request (X),

not ins_bl_request(Y),..., not ins_bs_request(Y),

Following the previous example, the derived closure insertion of Professor(john) should
be applied only if it does not get in conflict with any negative inclusion assertion entailed
by the TBox. In the example, such a conflict might arise if there is a request to insert
Student(john) because of the negative inclusion assertion Student C —Professor in 7. So, in
D* we have:

ins_prof (X):- ins_prof_closure(X), not ins_student_request (X).

1360



INSTANCE-LEVEL UPDATE IN DL-LITE ONTOLOGIES THROUGH FIRST-ORDER REWRITING

Let us illustrate the construction above with an example.

Example 11 Consider the ontology O = (T A) given in Example 1 and the update request
U = {i(AssociateProfessor(john)), d(Course(algebra))} of Example 6. The Datalog program
D* for computing O e U contains the following rules:

%ABox assertions

full (john).

takes (bob, algebra).

%Update requests
ins_associate_request (john).
del_course_request (algebra).

ins_associate(X) :- ins_associate_request(X), not associate(X). %hril
del_associate(X) :- del_associate_request(X), associate(X).
incompatible_update() :- ins_associate_request(X), del_associate_request (X).

ins_course(X) :- ins_course_request(X), not course(X).
del_course (X) :- del_course_request(X), course(X).
incompatible_update() :- ins_course_request(X), del_course_request(X).

del_takes(X,Y) :- takes(X,Y), del_student_request(X).

del_takes(X,Y) :- takes(X,Y), del_course_request(Y). hr2
incompatible_update () :- ins_takes_request(X,Y), del_student_request (X).
incompatible_update() :- ins_takes_request(X,Y), del_course_request(Y).

del_full(X) :- full(X), ins_associate_request(X). %hr3
del_associate(X) :- associate(X), ins_full_request(X).

ins_prof_closure(X) :- del_full(X), not prof(X),
not ins_prof_request (X),
not del_prof_request (X),

not del_person_request (X). hrd
ins_person_closure(X) :- del_full(X), not person(X),
not ins_person_request (X),
not del_person_request (X). %rb5
ins_student_closure(X) :- del_takes(X,Y), not student(X),

not ins_student_request (X),
not del_student_request (X),

not del_person_request (X). %hr6
ins_person_closure(X) :- del_takes(X,Y), not person(X),

not ins_person_request (X),

not del_person_request (X). hr7
ins_prof(x) :- ins_prof_closure(X), not ins_student_request(X). %r8
ins_person(x) :- ins_person_closure(X). %r9
ins_prof(x) :- ins_student_closure(X), mnot ins_prof_request(X). %r10
ins_person(x) :- ins_person_closure(X). hril

Similarly to Example 10, since i(AssociateProfessor(john)) € U, the rule r1 in D* generates
ins_associate(john), moreover, from rule r3, which belongs to D* since FullProfessor C
—AssociateProfessor € ¢l(7T), we compute del_full(john). At this point, rules r4 and r5
lead to compute ins_prof_closure(john) and ins_person_closure(john). Then, from
rules r8 and r9 we compute ins_prof (john) and ins_person(john).

Since JtakesCourse™ T Course in cl(7T), the deletion request d(Course(algebra)) in U
leads to compute del_takes(bob,algebra) via rule r2. Then, rules r6 and r7 compute
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ins_student_closure(bob) and ins_person_closure(bob). Finally, from rules r10 and
r11 we have ins_student (bob) and ins_person(bob).
Summarizing, D* computes:

ins_associate(john) . del_full(john).
ins_prof (john) . ins_person(john) .
del_takes(bob,algebra) . ins_student (bob) .

ins_person(bob) .

from which we compute the same ABox of Example 8.

A, ={ AssociateProfessor(john), Professor(john), Person(john),
Student(bob), Person(bob) }

5.2 Results

We prove that, given a consistent ontology O = (T, A) and an update U compatible with O,
the insertion/deletion instructions generated by the Datalog program D* lead to compute
O eU. In what follows, we denote by Ap+ the ABox computed from the ABox .4 by adding
(resp. removing) an assertion A(0) if ins_a(o) (resp. del_a(o)) is true in D*.

The following theorem shows that the Datalog program D* can be used for detecting if
an update U is compatible with a DL-Litey TBox T or not.

Theorem 5 Let (T,A) be a consistent DL-Litey ontology, U be an update, and let D* be
the corresponding Datalog program defined as above (Section 5.1). U is not compatible with
T if and only if incompatible update() is true in D*.

Proof. We refer to the proof of Theorem 1. Indeed, all the rules specified in the program
D* for detecting if the update U is not compatible with the TBox T are the same as in the
Datalog program D specified for the foundational update semantics. In particular, the new
rules in D* do not affect any preconditions of the rules involving incompatible_update(). m

Next we show that D* is sound, i.e., that for every ABox assertion A(d) that should be
inserted/deleted according to D*, A(d) should be inserted/deleted according to the coher-
ence update semantics.

Theorem 6 (Soundness) Let (T,.A) be a consistent DL-Litea ontology, U be an update

compatible with T, and let D* be the corresponding Datalog program defined as above (Sec-
tion 5.1). Then, for each ABox assertion A(o), if (T, Ap~) = A(0), then (T, A)elU = A(0).

Proof. We focus on concept assertions, leaving aside role assertions, since the proof of the
role assertion cases follows similarly. Thus, on the following we show that for any concept
assertion A(o) s.t. (T, Ap+) = A(o), then (T, A) e U = A(0).

If (T, Ap+) = A(o), then there exists in Ap~ an assertion B(o0) (possibly equals to A(0))
such that (7,{B(0)}) = A(0). Given this assertion B(0) € Ap-, suppose by contradiction
that (7, A) U (= B(0). Now, there are two cases to consider: the case where B(o) belongs
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to the original ABox A and the case where it does not. We are going to show that we reach
a contradiction in both cases, and thus, (7, .A) eU |= B(o0), which implies (7, A) oU |= A(o).
First, consider the case where B(o) € A. Since, by hypothesis, (T,.A) U = B(o0), we
have one of the following cases: (i) B(o) € A;,, therefore del b(o) is true in D* because
of the rule del b(X) :- b(X), del_b_request(X) in D* obtained in translating U; (i7)
there is in A;, an assertion C(0) and 7 |= B C C, which means that because of the rule
del b(X) :- b(X), del_c_request(X) in D*, del b(o) is true in D*; (iii) there exists an
assertion C(o) in A} such that (T,{B(0),C(0)}) is inconsistent, that is 7 = B C —~C and
so the rule del b(X) :- b(X), ins_c_request(X) is in D* leads to compute del b(o). In
all such cases del_b(o) is true in D* and so B(o) cannot belong to Ap-, contradiction.
Lets now consider the case where B(0) ¢ A. Since B(o) € Ap+, we know that ins_b(o)
is true in D*. This literal can be true because of two cases: i) it can be because of the rule
ins b(X) :- ins_b_request(X), not b(X) generated when translating ¢/, which can only
be true if B(o) is in A, thus (T, A)el/ |= B(0), contradiction. ii) ins_b(o) can be true in D*
because of a rule of the form ins b(X) :- ins b_closure(X), not ins_cl request(X),
. ins_cn request(X), where 7 | B C —C; for each C,...,C,. So, ins b(o) can be
true only if the ins b_closure(o) is true, and if there is in .AZ[' no insertion request that,
with respect to T, contradicts B(o0). If ins_b_closure(o) is true, it is because of a rule
of the form ins b_closure(X) :- del d(X), not b(X), not ins b request(X), not
del b_request(X), not del bl request(X),..., not del bm request(X), where 7 =
DC B, T |E BLC B, for each By, ..., By, and because del_d (o) is true in D* and there are
no deletion request for facts that are entailed by B together with 7. Since del_d(o) can
be true only if D(0) € A, it follows that B(o) € cl7(A). Thus, since it does not contradict
any assertion in A, and no deletion request in A, requires its deletion from cly(A), it
follows that it belongs to the ABox accomplishing the update of (T, cl7(A)) with U, hence
(T, A) eU = B(0), contradiction. .

Next we show the completeness of D* with respect to the coherence update semantics.

Theorem 7 (Completeness) Let (T, A) be a consistent DL-Litey ontology, U be an
update compatible with T, and let D* be the corresponding Datalog program defined as
above (Section 5.1). Then, for each ABox assertion A(o), if (T, A) eU = A(0) then
<T, ./41)*) ': A(ﬁ)

Proof. 'We show that each assertion A(0) that is entailed by (7,.A) ¢ U is also entailed by
(T, Ap+). There are two cases, the case in which A(9) is new because of the update (A(0)
is entailed by AZ;), and the case where A(0) was already in the initial ontology, and still
remains true despite the update.

Consider the case where A(0) is entailed by A. Thus, for some B(0) € A;} (possibly
equal to A(0)), we have (T,{B(0)}) = A(5). By definition of D, for each fact B(0) in A},
we have that ins b(X) :- ins_b.request(X), not b(X) isin D, so, if B(6) € A, then
(T, Ap+) = B(0), and hence, (T, Ap+) E A(0).

Now, we show that each assertion that was entailed by the original ABox A and that
is still entailed by (7,.A) e U is also entailed by (7, Ap+). To this aim we refer again to
Algorithm 1. Indeed, since A C cl7(A), the ABox accomplishing the update of (7, A) with
U and the one accomplishing the update of (T, cly(A)) with U preserve the same portion
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of A. Hence, for each assertion A(0) € A, (T,A) eU [~ A(o) iff (T, A) olU [~ A(0). It
follows that if an assertion A(o) was removed from A, we derived del_a(o) in D* from
the Datalog rules already generated in D for the foundational update semantics, whose
soundness and completeness are already proved. Hence, we have shown that for each
A(o) € A, if (T, A) el = A(0) then (T, Ap+) | A(0). Let A’ be the ABox accomplishing
the update of (T, cl7(A)) with U. We only lack to prove that each assertion A(0) entailed
in the original ABox A but not explicitly contained in A" (i.e., A(0) € clr(A\ A)),
and entailed by (7,.A) e U, is still entailed by (T, Ap«). If A(o) € clyr(A\ A’) and
(T,A) e = A(0), then there is an assertion B(o) € A\ A’ such that T E B C A,
Mod(T,UT U{A(©)}) # 0 and A(0) &7 u for any u € U~. By construction of D*, we

have the rule ins_a_closure(X) :- del b(X), not a(X), not ins,a,request(Y),
not del_a request(X), not del_al request(X),..., not del_am request(X),
where T = A T A; for each Aj,...,A,. Therefore, ins_a closure(o) is true in D*.
Moreover, the rule ins_a(X) :- ins_a_closure(X), not ins_cl_request (X),
ins_cn request (X), where 7 = A C —C; for each Cj, ..., C,, in D* leads ins_a(o) to be
true. Thus, A(0) € Ap+, and so the claim is proved. .

Finally, we are ready to show FO-rewritability of the update. It is easy to see that, also
in this case, the Datalog program D* built for the update is polynomial in the size of the
TBox 7 and independent of the data in the update U and in the ABox .A. Hence we get
the desired result.

Theorem 8 (FO-Rewritability) The decision problem of the update under the coherence
semantics for DL-Lites ontologies is FO-rewritable and in AC® in data complezity.

Proof. The proof directly follows from Theorem 5, Theorem 6, Theorem 7, and from the
fact that evaluation of a FO query over an ABox is in AC? in data complexity (Abiteboul
et al., 1995). .

6. Implementation and Experiments

In this section we illustrate the results of the experiments we carried out to demonstrate the
feasibility and scalability of our technique. To this aim, we have implemented a prototype
tool developed in Java that uses a MySQL database to store the ABox. Briefly, the Java
program takes as input a closed DL-Litey TBox and computes the Datalog program that
generates the insertion and deletion instructions necessary to perform the update according
to the coherence semantics presented in the previous sections. Moreover, the program trans-
lates the Datalog derivation rules into standard SQL queries. Since this process depend on
the TBox only, without taking into account the ABox or the update request, all of them
are created in compilation time and stored in the MySQL database as views.

To generate the instructions for modifying the ABox that are used to perform the update,
the user must (¢) insert the update request instructions in the ins_a_request/del_a_request
MySQL tables, and (ii) query the contents of the ins_a/del_a views.

We focus on the coherence update semantics only for sake of brevity. We chose the
coherence semantics since it is computationally harder than the foundational one. Indeed,
as shown, the set of insertion/deletion instructions that have to be applied for performing
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an update according to the foundational update semantics is a subset of the ones needed
to perform the update according to the coherence semantics. So, we have carried out our
experiments in the most complicated scenario. On the other hand, we do not expect sig-
nificant changes in adopting the simplest foundational semantics, being the results for the
coherence semantics already quite good.

In the following, we first discuss the design of our experiments, then we present the
experimental results, and finally, we close this section with a discussion.

6.1 Experiment Design

The experiment design is composed of three main input elements: a DL-Lite4 TBox that
we use to define the Datalog derivation rules (i.e., the SQL views computing the insertion-
s/deletions), an ABox (i.e., the database content), and a set of update request instructions.
These three elements determine the set of insertions/deletions to apply according to the
coherence update semantics.

Given this input, we analyze (i) the number of instructions required for applying the
update request, (ii) the time to generate them, and (ii7) the time to apply them. We measure
these three metrics with respect to the size of the ABox, i.e., the database data. Thus, we
have fixed the input ontology, together with the update request, leaving the size of the data
to be our variable under study.

In our experiments, we used the LUBM benchmark (Guo et al., 2005). The LUBM ontol-
ogy describes the university domain and contains 75 ontology predicates and 243 assertions.
Since its expressivity goes beyond DL-Litey (due to the presence of positive inclusion asser-
tions with qualified existential restrictions or concept conjunctions in their left-hand side),
we first computed an approximation in DL-Lites of it, and then, given that the LUBM on-
tology contains neither negative inclusion assertions nor functionality, we slightly modified
the approximated ontology by adding 20 assertions (negative inclusions and functionalities).
Our final ontology consists of 195 assertions.

Regarding the data, we have created different ABoxes of increasing size (from 10° to 3.5x
107 assertions). To do so, we have modified the UBA Data Generator® (i.e., the default data
generator provided within the LUBM benchmark) to create data about a single university
with an increasing number of connected departments, teachers, etc. We did this because
by increasing the number of connected objects in the ABox, the update procedure became
more complex when increasing the data size. Indeed, by default, the UBA Data Generator
increases the size of the data by creating facts about new universities. However, the data
relating to distinct universities are not linked to each other (thus, an update operation on
one university does not affect other universities) and, therefore, it is reasonable to expect
that the measurement values would barely vary as the data size increased.

Finally, we have specified an update request containing three insertion operations and
three deletion operations. As for the insertion operations, we selected three facts to add in
a way to ensure several interactions with the TBox assertions and the facts in the ABox,
thus, generating several insertions/deletions. Specifically, we choose three instances of the
concept Professor and request to add them as instances of the concept Student (Professor

6. http://swat.cse.lehigh.edu/projects/lubm/
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Table 1: Experiment Results Table. Time values are given in seconds, while the database
size is given in number of tuples.

Database size  Generated instructions Generation time Execution time Total time

1*¥10° 139 11.98 6.265 18.25
4.8%10° 163 13.23 6.546 19.78
2%10° 218 13.69 6.06 19.75
2.9%10° 213 10.81 5.94 16.75
5.7%10° 242 10.70 6.11 16.81
1.1*¥107 321 12.59 7.33 19.92
1.9%107 463 14.00 5.52 19.52
3.5%107 479 15.43 6.93 22.36

and Student are specified as disjoint concepts in the ontology). Additionally, we requested
to remove three instances of the concept Professor (not related to the inserted ones).

6.2 Experimental Results

We present the results of our experiment in Table 1. In particular, the table shows for each
database size (i.e., ABox size), (i) the number of insertion/deletion instructions generated
by the tool that have to be performed over the database to meet the update request, (ii) the
time to compute them, (ii7) the time to execute them, and (iv) the total time to compute
and execute them. The insertion/deletion queries are run in parallel. All time values are
given in seconds.”

First, we observe that, although the update requested consists of only 6 update opera-
tions, the numbers of insertion/deletion instructions computed by the tool is significantly
higher. Indeed, one can see that the update requires 139 insertion/deletion instructions to
be accomplished in the smallest database (1¥10° ABox assertions), and 479 in the largest
one (3.5*10” ABox assertions).

The times to generate such instructions range from almost 12 seconds to 15.43 seconds.
In addition, we have to consider the execution times of such instructions which range from
just under 6 seconds to just over 7 seconds. So, in total, we have times ranging from 18.25
seconds to 22.36 seconds.

We observe that all results seem to grow linearly with respect to the database size. To
better illustrate such a trend, we show the same data in the diagrams in Figure 4. Specif-
ically, in the left-hand side diagram, we depict both the time to generate the instructions
(x points) and the total time (+ points), while, in the right-hand side diagram, we show
the number of generated instructions (x points). In both diagrams, the trend lines hint at
a linear growth with respect to the database size.

7. Experiments were executed on a MySQL DBMS running on a Windows machine with an Intel Core
i7 processor and 8GB of RAM. More details on the experiments can be found at www.essi.upc.edu/
~xoriol/dllitea/.
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Figure 4: Experiment Results Graphics

6.3 Discussion of the Experimental Results

We now discuss the result of our experiments. The slow increment in the number of generated
instructions can be traced back to the fact that, in DL-Lite4, an update request only requires
modification to those instances that are connected to the assertions in the update request.
Thus, since ABoxes tend to increase their size by increasing the number of objects, rather
than infinitely augmenting the connectivity between them, increasing the ABox size barely
increases the number of generated update instructions, as it has been observed in the right-
hand side diagram in Figure 4.

One can observe that the time for generating the insertion/deletion instructions take a
constant time penalty of about 12 seconds (independently of the size of the database).
Indeed, since the LUBM ontology is composed of 75 basic concepts/roles, our method
needed to apply 150 queries to compute the insertions and the deletions to apply to every
concept/role. Considering that each query requires time to be processed, this phenomenon
naturally creates a constant execution time penalty to execute them all. To reduce this issue,
we have run the queries in parallel, but since our machine can run a limited number of queries
in parallel we still observe the constant penalty cost. These results might be further improved
by applying some precompiled optimizations. For instance, we can compute, at compile-
time, which are the concepts/roles which might need to be changed when inserting/deleting
some facts into other concepts/roles. Thus, at runtime, given an update request, instead
of running the 150 queries, we could run only the subset of queries effectively needed to
implement the request.

Similarly, the time to execute the instructions, which was about six seconds indepen-
dently of the size of the database, might be due to the high number of procedures that
are executed to update all the 75 concepts/roles in the LUBM ontology. Again, these times
can be reduced if, instead of running the procedures to update all the 75 concepts/roles,
we just run those over the concepts/roles that need to change. This optimization, as in the
previous case, requires precomputing those insertions/deletions in one concept/role that
might produce insertions/deletions in another concept/role. Such a computation depends
on the TBox only, and thus, is affordable at compilation time.
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We would like to stress that we can observe a very low linear increase in the execution
time with respect to the database size. In fact, the right-hand side diagram in Figure 4
shows that most of the time consumed is due to the above discussed constant time penalty,
which, as shown, might be reduced by applying precompiled optimizations.

Concluding, even without the optimizations (which are per se an interesting subject
for future work) the obtained running times are satisfactory. Hence, we believe that our
approach can be effectively used in practice for updating ontologies with large ABoxes.

7. Conclusions

In this paper we have shown that the DL-Lite family, in particular DL-Litea, enjoys the first-
order rewritability of instance-level updates. Apart from the theoretical interest, this result
gives us a practical and effective technique to perform updates over DL-Lite ontologies:
compute the rewritings of the specified update in terms of queries characterizing the facts
(ABox assertions) to be added and removed, and apply the additions and deletions on the
ABox, considered as a database.

Although we have not considered any specific syntax to express the update, what we
proposed here is fully compatible with SPARQL update operators studied in (Ahmeti et al.,
2014). There, the set of insertions and deletions are defined through unions of conjunctive
queries over the current ontology. We can immediately extend our approach in the same
way, producing update operators that are equivalent to the ones defined in (Ahmeti et al.,
2014) in the case of RDFS, but that deal with the more expressive DL-Liteq and OWL 2
QL languages.

Note that here we have dealt with ABoxes and not with external data sources that need
to be suitably mapped to the ontology as in (Poggi et al., 2008). Extending our techniques
to handling external data sources is indeed possible. Although in that case it becomes of
interest not only updating through the ontology as done here, but also reflecting source
updates as some form of ontology update, see (De Giacomo et al., 2017).

There are several directions for future work, but maybe the most compelling one, encour-
aged by the practical applicability of our results, is to extend our Datalog-based approach
blurring the distinction between TBox and ABox and to consider the TBox itself as (meta)
data, in line with the use of SPARQL over OWL 2 QL ontologies (De Carvalho et al., 2017;
Cima et al., 2017; Pinto et al., 2019).
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