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Abstract

Recent approaches to goal recognition have leveraged the
concept of planning landmarks to achieve high-accuracy with
low run-time cost. These approaches, however, lack a proba-
bilistic interpretation. Furthermore, while most probabilistic
models to goal recognition assume that the recognizer has
access to a prior probability representing, for example, an
agent’s preferences, virtually no goal recognition approach
actually uses the prior in practice, simply assuming a uni-
form prior. In this paper, we provide a model to both extend
landmark-based goal recognition with a probabilistic inter-
pretation and allow the estimation of such prior probability
and its usage to compute posterior probabilities after repeated
interactions of observed agents. We empirically show that our
model not only recognizes goals effectively but also success-
fully infers the correct prior probability distribution repre-
senting an agent’s preferences.

1 Introduction

Goal Recognition is the task of inferring an agent’s goals,
given a potentially flawed observation of this agent’s be-
havior (Sukthankar et al. 2014). The area of Goal and
Plan Recognition as Planning (Ramirez and Geffner 2009)
has advanced substantially over the past decade, yielding
a number of approaches capable of coping with partial
and noisy observations (E-Martin, R.-Moreno, and Smith
2015; Sohrabi, Riabov, and Udrea 2016), and doing this ef-
ficiently (Pereira, Oren, and Meneguzzi 2020).

Virtually, all such efforts use the model of Ramirez and
Geffner (2010) as their underpinning, which defines via
Bayes’ Rule the probability of a goal, given observations in
terms of the probability of the observations given the goal,
and some prior probability of goals, representing an agent’s
preference. Comparatively, fewer efforts provide a proba-
bilistic interpretation of the model defined by Ramirez and
Geffner (Ramirez and Geffner 2010; Sohrabi, Riabov, and
Udrea 2016; Kaminka, Vered, and Agmon 2018). Fewer ef-
forts still actually use the prior probability on goals, assum-
ing instead a uniform distribution for the goals, and ignor-
ing the prior in their calculations. Ignoring the prior proba-
bility bakes into the goal recognition model the assumption
that all goal recognition tasks are one-shot, such that agents
pursue exactly one goal within a particular goal recognition
domain exactly once. Such an assumption does not reflect

many goal recognition tasks, such as intention recognition
for elder care (Geib 2002), assistance for activities of daily
living (Sim et al. 2010), proactive user interfaces (Amir and
Gal 2013), among others.

In this paper, we expand goal recognition problems from
the traditional one-shot setting used by all approaches so far,
into problems that assume goal hypotheses have different
probability distributions representing an agent’s preferences
and develop a solution for this problem by extending recent
work on landmark-based goal recognition (Pereira, Oren,
and Meneguzzi 2020). Our key contributions are twofold:
(1) a novel definition of goal recognition problems with a
distribution over goal preferences; and (2) a probabilistic in-
terpretation that relies on the concept of landmarks.

2 Background
Planning

Planning is the problem of finding a sequence of actions
(i.e., a plan) that achieves a goal state from an initial
state (Ghallab, Nau, and Traverso 2004). A state is a fi-
nite set of facts that represent logical values according to
some interpretation. Facts can be either positive or negated
ground predicates. A predicate is denoted by an n-ary pred-
icate symbol p applied to a sequence of zero or more terms
(10, T1, --.» Tn)- An operator is represented by a triple a =
(name(a), pre(a), eff (a)) where name(a) represents the de-
scription or signature of a; pre(a) describes the precondi-
tions of a — a set of facts or predicates that must exist in the
current state for a to be executed; eff (a) = eff (a) T Ueff (a) ™
represents the effects of a, with eff (a) ™ an add-list of posi-
tive facts or predicates, and eff (a) ™~ a delete-list of negative
facts or predicates. When we instantiate an operator over its
free variables, we call the resulting ground operator an ac-
tion. A planning instance is a triple Il = (2,7, G), where
E = (F, A) is a planning domain definition; F consists of a
finite set of facts and A a finite set of actions; Z C F is the
initial state; and G C F is the goal state. A plan is a sequence
of actions m = (ag, ay, ..., a,,) that modifies the initial state
7 into one in which the goal state G holds by the successive
execution of actions in 7. As in Classical Planning, actions
have an associated cost, and here, we assume that this cost
is 1 for all actions. A plan 7 is optimal if its cost is minimal.



Goal Recognition as Planning

Goal Recognition is the task of discerning the intended goal
of autonomous agents or humans by observing their inter-
actions in a particular environment (Sukthankar et al. 2014,
Chapter 1). We formally define the problem of Goal Recog-
nition as Planning by adopting the formalism of Ramirez
and Geffner (2009; 2010), as follows in Definition 1.

Definition 1 (Goal Recognition Problem). A goal recog-
nition problem is a tuple I3 = (Z,Z,G, ), where: = =
(F, A) is a planning domain definition; T is the initial state;
G = (Go, Gh,...,Gy) is the set of goal hypothesis, includ-
ing the correct intended goal G*, such that G* € G; and
Q = (0g, 01, ..., 0,,) is an observation sequence of executed
actions, with each observation o; € A.

The ideal solution for a goal recognition problem Hg is
recognizing the correct intended goal G* € G that the obser-
vation sequence {2 of a plan execution achieves. An obser-
vation sequence €2 can be full or partial. A full observation
sequence contains all actions of agents’ plans, so all actions
of a plan are observed, whereas in a partial observation se-
quence, only a sub-sequence of actions are observed.

Existing work on Goal Recognition as Planning consid-
ers the solution to a goal recognition problem to be either
a score system associated to the goal hypothesis (Pereira,
Oren, and Meneguzzi 2017, 2020), or a probability distri-
bution for the goal hypothesis (Ramirez and Geffner 2009,
2010; E-Martin, R.-Moreno, and Smith 2015; Sohrabi, Ri-
abov, and Udrea 2016). In this work, we extend a landmark-
based approach for goal recognition and provide a proba-
bilistic model that relies on the concept of landmarks.

3 Probabilistic Goal Recognition as
Reasoning over Landmarks

Key to our probabilistic goal recognition approach is the
concept of landmarks in planning, which has been exten-
sively used in goal recognition approaches (Pereira, Oren,
and Meneguzzi 2017; Vered et al. 2018; Pozanco et al. 2018;
Shvo and Mcllraith 2020). Landmarks are necessary facts
(or actions) that must be true (or executed) at some point
along all valid plans that achieve a particular goal from an
initial state (Hoffmann, Porteous, and Sebastia 2004). Land-
marks are often partially ordered based on the sequence in
which they must be achieved. Hoffman et al. (2004) define
fact landmarks as follows:

Definition 2 (Fact Landmark). Given a planning instance
11 = (E,Z,G), a formula L is a fact landmark in 11 if and
only if L is true at some point along all valid plans that
achieve G from I. A landmark is a type of formula (e.g., a
conjunctive or disjunctive formula) over a set of facts that
must be satisfied at some point along all valid plan execu-
tions.

The process of generating all landmarks and deciding
their ordering is PSPACE-complete (Hoffmann, Porteous,
and Sebastia 2004), which is exactly the same complexity
as deciding plan existence (Bylander 1994). Thus, to operate
efficiently, most landmark extraction algorithms (Hoffmann,
Porteous, and Sebastia 2004; Silvia Richter 2008; Keyder,

Richter, and Helmert 2010) extract only a subset of land-
marks for a given planning instance.

In what follows, we expand the Landmark-Based
Goal Recognition framework of Pereira, Oren, and
Meneguzzi (2020) with a probabilistic interpretation that
allows us to perform recognition repeatedly refining esti-
mated goal probabilities over time. The recognition frame-
work of Pereira, Oren, and Meneguzzi (2020) provides a
scoring system that ranks the goal hypotheses G accord-
ing to the ratio between the number of achieved landmarks
and the total number of landmarks. Our probabilistic inter-
pretation model follows the well-known probabilistic model
of Ramirez and Geffner (2010). The probabilistic model of
(Ramirez and Geffner 2010) sets the probability distribution
for every goal G in the set of goals G, and the observation se-
quence {2 to be a Bayesian posterior conditional probability,
as follows:

PG| Q) =a*P[Q]G]P[G] (1)

where P [G] is a prior probability to goal G, « is a normal-
izing factor, and P[Q | G] is the probability of observing
Q) when the goal is G. Ramirez and Geffner (2010) com-
pute P[Q? | G] by computing two plans for every goal G, and
based on these two plans, they compute a cost-difference be-
tween these plans and plug it into a Boltzmann equation.
Basically, they compute a plan that complies with the ob-
servations, and another a plan that does not comply with the
observations. The intuition of Ramirez and Geffner proba-
bilistic model is that the lower the cost-difference for a goal,
the higher the probability for this goal.

In contrast, our probabilistic model reasons over the ev-
idence of landmarks, and follows the intuition of Pereira,
Oren, and Meneguzzi (2020), where goals G are ranked ac-
cording to their score, namely, the most likely goals are the
ones that have achieved most of their landmarks in the ob-
servations. Thus, replicating this ranking in a probabilistic
setting entails assigning probabilities to the observation of
landmarks. If we consider an arbitrary goal G and represent
its landmarks as a set L, where Lo € L¢ is an individual
landmark for G, we can reason about the probabilistic prop-
erties of observing such landmarks. First, since landmarks
are necessary conditions to achieve a goal, the probability of
observing all landmarks in a set of observations for a given
goal should be 1, as we formally define in Equation 2.

PlLg|G)= ) PlLg|Gl=1 @)
Lg€eLlc

Without any additional evidence, we can also infer that the
probability of observing any given individual landmark in an
observation sequence ) should be uniformly distributed as
shown in Equation 3.

1
If we completely ignore the ordering of the landmarks in
observations, and consider only the probabilities of observ-
ing landmarks, we can compute the probability of a particu-
lar set of observations () towards a goal GG using Equation 4.
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Thus, we use landmarks as a proxy for the probability of
the entire set of observations {2 given a goal G. We can plug
P[Q | G] defined in Equation 4 into the Bayesian formula-
tion of Ramirez and Geffner from Equation 1. Since we as-
sume the set of goal hypotheses to be exhaustive and mutu-
ally exclusive, we can compute instead a normalizing factor
«, which we obtain from Equation 5.
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When no priors P [G] are informed, we can assume that
their distribution is uniform, and compute them through
P[G] = ﬁ In Section 4, we show how we infer prior prob-

abilities by observing repeated goal recognition episodes.

4 Prior Estimation by Repeated Episodes

We now expand the probabilistic model of Section 3 to com-
pute posterior goal probabilities when the prior goal proba-
bilities follow a non-uniform distribution over repeated goal-
recognition episodes. The resulting model allows us to con-
verge towards the actual probability distribution that can be
used as a prior for further goal recognition episodes. We for-
malize the extended version of such problem in Definition 3.

Definition 3 (Repeated Goal Recognition Problem). A
repeated goal recognition problem is a tuple Hg =
(2,Z,G,99), where: = = (F, A) is a planning domain def-
inition; T is the initial state; G = (Go, G1, ..., Gy,) is the set
of goal hypothesis; and Q9 = {Qo,...,Q,} is a set of ob-
servation sequences, where each ); € 09 is an observation
sequence (0g, 01, - . . , O ) Of executed actions, with each ob-
servation o; € A. Observation sequences S); are projections
of plans m; for planning tasks (E,Z,G;) such that the in-
tended goal G; € G is drawn from a probability distribution
P [G] with probability P [G = G;].

The solution for a repeated goal recognition problem is
the correct probability distribution P [G] that generated the
set of observation sequences {2 in the problem of Defini-
tion 3. Here, P [G] does not represent the result of a single
episode of goal recognition, but rather the goal preferences
of the agent under observation under repeated episodes.

Our prior estimation consists of processing each observa-
tion sequence §2; € Q9 and count the number of times we
recognize each candidate goal as the actual goal of an obser-
vation sequence §2;. We recognize the goals of each obser-
vation sequence independently, ignoring any priors in order
to avoid biasing the count, by simply running our probabilis-
tic goal recognition model against each individual observa-
tion sequence. Thus, during the estimation of the priors, we
do not use any partially computed prior probabilities in the
recognizer (Line 4). After each run, we check whether we
correctly recognize the goal for sample €2; (Line 5), which

we do in a supervised way. Each correctly recognized goal
G for a sample results in an increment of the corresponding
counter C¢;. After repeating the process for all samples, we
compute the prior for every candidate using the counter val-
ues and a form of Laplace smoothing (marquis de Laplace
1825) shown in Line 6, where k is the number of ghost sam-
ples we include to prevent any goal from having a proba-
bility of exactly 0. Algorithm 1 formally describes how our
prior estimation process works.

Algorithm 1 Prior Estimation.

I: function ESTIMATEPRIOR(II)

2 Co < OforallG € G

3 for Q € QY do

4: G < RECOGNIZE(ITZ)

5 ifG* € GthenCq + Cqg +1forallG e G
6 P[G] + k+Cq

w+igh+ Y Ca

Geg
7: return P[]

forall G € G

> Return probability distribution.

S Experiments and Evaluation

We empirically evaluate our probabilistic model over the
recognition datasets from (Ramirez and Geffner 2009).
These datasets comprise hundreds of recognition problems
from four planning domains (BLOCKS-WORLD, EASY-
IPC-GRID, INTRUSION-DETECTION, and LOGISTICS),
having recognition problems with both partial and full ob-
servability. Recognition problems with partial observability
have four observation levels: 10%, 30%, 50% and 70%.

Repeated Goal Recognition Setup

To evaluate our repeated goal recognition algorithm, we de-
velop a recognition problem generator that generates a set of
samples that comprises Q9 from a set of possible goal hy-
pothesis G. We use the datasets from (Ramirez and Geffner
2009) to generate the samples. The generator receives prob-
lems from that dataset, which serves as the basis for the sam-
ples, the number of samples to be generated, the observabil-
ity level, and the probability distribution P [G] over the set
of goal hypotheses. This probability distribution guides the
selection of the goal state for each sample. Each sample gen-
erated from a given problem has the same domain definition
=, initial state Z and goal hypotheses G as the original prob-
lem from the dataset. We sample the goal state for each plan
sample from the goal hypotheses using the probability dis-
tribution IP [G], which is only known to the generator.

We use two different probability distributions to generate
such samples: a normal distribution with 4 = 1 and 0 = 0,
which we denote as NORMAL-SINGLE distribution, where
all samples have the same goal state as the original problem;
and a normal distribution, such that a single (preferred) goal
G; has P[G;] = 0.5, and the probabilities for other candi-
dates follow a normal distribution with goals more similar to
G have higher probability, resulting in a distribution with
u ~ 1.7 and o = 2.4. We denote this second probability
distribution as NORMAL-DIVERSE.



Finally, we generate the observations for each sample. We
use Fast Downward (Helmert 2011) to generate the plans
from which we project the observations. For each sample
i, we feed the Fast Downward planner with a planning task
comprised of the domain definition = and initial state Z from
the original problem that is being used to generate the sam-
ples and the goal state GG; drawn from the probability distri-
bution IP [G] for that sample. We then take the plan returned
by Fast Downward and randomly select actions comprising
the observations for the sample. The number of selected ac-
tions is defined by the observability level informed to the
generator.

For the experiments described in this paper, we generate
250 samples for each problem in the dataset. This number
of samples shall provide a good diversity of combinations
between observation sets (when dealing with partial obser-
vations) and goal states over the samples, which allows us to
better evaluate our solution.

After all the samples have been generated, we run the rec-
ognizer for each sample, using the result to infer our pri-
ors, as explained in Section 4. We smooth the priors using
the process described in Algorithm 1 with a k value of 1.
We then insert the inferred priors into the original problem
that was used to generate the samples, whose correct in-
tended goal is the agent’s preferred, and run the recognizer
for that problem. We use the result from this run to compute
our recognition time, Accuracy, Spread in G and A metrics,
which we explain in the following section.

Evaluation Metrics

We use three metrics in our evaluation: Accuracy (Acc %),
representing the fraction of problems in which the correct
intended goal is among the goals with the highest posterior
probability; Spread in G (S in G), representing the average
number of goals recognized as the most likely; and recog-
nition time (Time) in seconds, representing the recognition
time including the landmark extraction process.

We use two additional metrics when evaluating our prob-
abilistic model with prior probabilities. Max-Norm is the
largest difference between corresponding probabilities in the
distribution that generated the samples and the estimated
distribution of priors, used to evaluate the distance between
these two distributions. If we can infer the priors exactly
right, Max-Norm = (. The second metric is a A metric,
which is the difference between the P [G | ] of the real goal
when using priors and when not using priors and gives us an
insight on how helpful the priors are in one-shot recognition.

Finally, we evaluate how the repeated process affects the
accuracy over time, by running the recognizer for the orig-
inal problem with priors after each sample is executed. We
compute the average accuracy per number of samples aggre-
gating results for all domains, and plot a graph that indicates
the change in accuracy as the number of samples grows.

Goal Recognition Results

Table 1 shows the results for executions with no priors
(traditional one-shot recognition, denoted as NO PRIORS),
with priors generated through a single-goal samples dis-
tribution (NORMAL-SINGLE), and with priors generated

through normal samples distribution (NORMAL-DIVERSE).
We show the results for all four domains using the recogni-
tion datasets from (Ramirez and Geffner 2009). For each do-
main, we show the number of problems (under the domain
name), the average number of candidate goals |G|, the av-
erage number of extracted landmarks | £ |, and the average
number of observations | 2 |. For each of the three prior se-
tups, we show recognition time, accuracy, and Spread in G.
As for the prior setups that use priors, we show results for
two additional metrics: Max-Norm and A. We can see that
when using no priors we achieve similar results (in terms
of accuracy and Spread in G) to the landmark-based ap-
proaches in (Pereira, Oren, and Meneguzzi 2020). However,
we achieve much better results when using prior probabil-
ities (NORMAL-SINGLE and NORMAL-DIVERSE columns
in Table 1), as it simulates agents’ preference using our prior
estimation process. Naturally, the NORMAL-SINGLE distri-
bution yields better results, as the agent always chooses the
same intended goal in the samples.

We also see that the average Max-Norm value is higher
for lower observability, especially for NORMAL-SINGLE
distribution (on average). This difference might be due to
the higher variability in the observations at lower observabil-
ity, leading to multiple goals being recognized as possible
in each recognition episode. This may result in the prior of
an incorrect goal becoming higher, which affects the Max-
Norm. Since in the NORMAL-SINGLE every goal that is not
the preferred one has a probability of 0 in the generator’s
distribution, this causes the Max-Norm metric to be higher
for this distribution. The A metric increases with the observ-
ability level. As the accuracy increases with the increase in
observations, the probabilistic model is correct more often
during the prior estimation process, which helps to increase
the probability of the correct intended goal in the prior.

Note that, for BLOCKS-WORLD domain, our probabilis-
tic model has lower accuracy in problems under the nor-
mal than the no priors in problems with full observations.
We believe that it happens due to the problem being actu-
ally much harder under the normal distribution. For exam-
ple, consider two goals: A and B. Consider that goal A
is the most likely intended goal for a repeated recognition
problem. Assume a set of samples in which A is the actual
intended goal, and goals A and B are considered the most
likely ones by our model during training. However, for the
samples where B is the intended goal, only goal B is the
most likely one. Therefore, in the resulting probability dis-
tribution, B’s prior probability will tend to be greater than
A’s prior probability. The result will be a prior probability
skewed towards B, misleading the model.

Finally, we analyze how the accuracy changes as the num-
ber of samples grows. Figure 1 shows the accuracy over time
for the NORMAL-SINGLE distribution for each observability
level. We can see an increase in accuracy right from the start
as well as quick stabilization of the average accuracy over
time, meaning that even with a moderate number of samples
we can increase the accuracy significantly.

Figure 2, on the other hand, shows the accuracy over time
for NORMAL-DIVERSE distribution. Although the increase
in accuracy isn’t as significant as in NORMAL-SINGLE dis-




NO PRIORS NORMAL-SINGLE NORMAL-DIVERSE
Domain |G| | |£]|% Obs € |Time|Acc % |Sin G|Time|Acc % |Sin G |[Max Norm| A |Time|Acc % |Sin G|Max Norm| A
10 1.1[023[219% | 1.3 [0.265|683% | 1.2 0.588  [0.371(0.255| 45.9% | 1.1 0312 [0.193
BLOCKS-WORLD 30 2910352(393% | 1.2 |0.204| 96.7% | 1.0 0.334  |0.633]0.192| 82.0% | 1.0 0.197 ]0.323
(793) 203|120 50 43 (0.346|59.0% | 1.2 |0.159|96.7% | 1.0 0.259 |0.699] 0.16 | 88.5% | 1.0 0.155 ]0.365
- 70 6.4 0.174| 80.9% | 1.2 0.286|97.8% | 1.0 0.215 0.73 | 0.28 | 88.0% | 1.0 0.124  ]0.398
100 8.6 [0.358]100.0%| 1.5 |0.292(100.0%| 1.5 0.246  0.694(0.269| 65.6% | 1.0 0.162  |0.361
10 1.8 (0413 71.1% | 2.7 [0.593|98.9% | 1.1 0336 {0.494(0.634| 73.3% | 1.0 0.239  [0.149
EASY-IPC-GRID 30 4.410474]86.7% | 1.6 |0.586|97.8% | 1.0 0.213  |0.584]0.567| 96.7% | 1.0 0.143  0.285
(390) 83168| 50 7.00.637|96.7% | 1.2 |0.496/100.0%| 1.0 0.156  |0.613(0.465|100.0%| 1.0 0.097 |0.344
70 9.8 |0.379| 989% | 1.0 [0.616/100.0%| 1.0 0.09 0.639(0.639(100.0%| 1.0 0.057 ]0.388
100 13.4]0.438/100.0%| 1.0 [0.641|100.0%| 1.0 0.028 |0.662| 0.61 |100.0%| 1.0 0.039  0.408
10 1.9(0478|75.6% | 1.4 [0.343]100.0%| 1.0 0.274  10.591(0.368(100.0% | 1.0 0.139  [0.367
INTRUSION-DETECTION 30 4.5(0491|944% | 1.0 |0.367|100.0%| 1.0 0.082 |0.733]0.377|100.0%| 1.0 0.051 0.46
(390) 16.7|13.8| 50 6.7 |0.467|100.0%| 1.0 |0.354|100.0%| 1.0 0.06 0.745|0.385(100.0% | 1.0 0.042  |0.466
70 9.5 046 [100.0%| 1.0 [0.377|100.0%| 1.0 0.058 |0.745| 0.4 |100.0%| 1.0 0.042  |0.463
100 13.1]0.524|100.0%| 1.0 [0.375|100.0%| 1.0 0.058 |0.735]0.441|100.0%| 1.0 0.043  |0.464
10 2.0 |0.544| 622% | 2.0 |0.497|100.0%| 1.0 0.473  {0.426]0.542| 80.0% | 1.0 0.262  |0.151
LOGISTICS 30 5.9(0.666| 86.7% | 1.3 |0.508|100.0%| 1.0 0.244 0.63 {0.527| 98.9% | 1.0 0.132  ]0.321
(390) 10.0{14.3| 50 9.6 |0.701| 94.4% | 1.1 |0.463|100.0%| 1.0 0.131 |0.714(0.482|100.0%| 1.0 0.076  |0.396
70  13.5|0.459] 97.8% | 1.0 ]0.548|100.0%| 1.0 0.07 0.75410.567100.0% | 1.0 0.048 |0.429
100 18.7(0.675|100.0%| 1.0 [0.563|100.0%| 1.0 0.035 |0.776]0.571|100.0%| 1.0 0.031 |0.461

Table 1: Experimental results comparing our landmark-based probabilistic model with no priors, priors estimating through
repeated episodes with NORMAL-SINGLE distribution and priors estimated through repeated episodes with NORMAL-DIVERSE
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Figure 1: Accuracy over time (number of samples) with
NORMAL-SINGLE distribution.

tribution, the accuracy increases in the very early stages
of the repeated goal recognition process. We note that for
NORMAL-DIVERSE, the accuracy curve takes more samples
to stabilize, showing that dealing with a more diverse distri-
bution of goals takes more samples with a constant prefer-
ence to obtain the preference insight.

6 Conclusions

In this paper, we have developed a novel probabilistic model
for Goal Recognition as Planning that relies on the con-
cept of landmarks, and a prior estimation process that infers
prior probabilities from past recognition episodes. We have
shown that our probabilistic model clearly benefits when
using prior probabilities that have been inferred from past
recognition episodes.

Our landmark-based probabilistic model can be used not
only in Classical Planning settings, but also in other plan-
ning settings that define the concept of landmarks, i.e., Tem-
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Figure 2: Accuracy over time (number of samples) with
NORMAL-DIVERSE distribution.

poral Planning landmarks (Karpas et al. 2015), Numeric
Planning landmarks (Scala et al. 2017). Our prior estima-
tion mechanism is completely independent of the underlying
goal recognition algorithm, and any such algorithm (even a
non-probabilistic one) could be used in estimating the priors.

As future work, we intend to expand our prior estimation
algorithm to non-classical planning settings, as well as to
settings where the agent under observation is adversarial.
An example of adversarial setting involves the agent deliber-
ately choosing undesired goals to skew the prior probability
away from the preference relation.
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