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Manufacturing is transitioning from a mass production model to a service model in which 
facilities ‘bid’ to produce products. To decide whether to bid for a complex, previously 
unseen product, a facility must be able to synthesize, on the fly, a process plan controller 
that delegates abstract manufacturing tasks in a supplied process recipe to the available 
manufacturing resources. Often manufacturing processes depend on the data and objects 
(parts) they produce and consume. To formalize this aspect we need to adopt a first-order 
representation of the state of the processes. First-order representations of the state are 
commonly considered in reasoning about action in AI, and here we show that we can 
leverage the wide literature on the Situation Calculus and ConGolog programs to formalize
this kind of manufacturing. With such a formalization available, we investigate how to 
synthesize process plan controllers in this first-order state setting. We also identify two 
important decidable cases—finite domains and bounded action theories—for which we 
provide techniques to actually synthesize the controller.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

To be able to remain competitive in a global marketplace characterized by faster market response and demand for cus-
tomization, modern manufacturing companies are transitioning from a traditional mass production model to more agile and 
cost-effective manufacturing networks and supply chains. Based on service-oriented principles, in the manufacturing as a 
service (MaaS) paradigm, the manufacturing infrastructure is shared on-demand by potentially large numbers of different 
manufacturing processes, so that the products to be manufactured are not known in advance, batch sizes are often small, 
and a facility may produce items belonging to heterogeneous product families for several customers at the same time [1,2]. 
The cost of managing and maintaining the manufacturing infrastructure is thus distributed across all customers, enhancing 
resource utilization and reducing unit production costs, the lead-time is decreased and the sharing of knowledge and pro-
duction processes makes better products. Different manufacturing models have been proposed in the literature to achieve 
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the MaaS vision, with a recurring emphasis on flexibility, scalability, adaptability and customization, and on an increase in 
collaboration, automation, data and knowledge sharing through the entire supply chain. Examples include, among others, 
Agile Manufacturing, Virtual Manufacturing, Application Service Providers, Manufacturing Grid, and Cloud Manufacturing.

Among these, Cloud Manufacturing [3–5] is currently seeing the most advanced trends in MaaS. Enabled by an increasing 
development in information technology, IoT, embedded systems and cloud computing technologies, Cloud Manufacturing is 
proposing an advanced MaaS paradigm and business model in which manufacturing resources, such as Computer Numerical 
Control (CNC) machines and robots, are packaged as abstract descriptions of manufacturing capabilities, then advertised 
and made available to customers through a cloud platform. Likewise, the transformations that are required to manufacture 
a product are assumed to be specified as abstract, system-independent processes that need to be matched against the 
abstract capability descriptions that are offered by the facilities participating in the manufacturing cloud. By doing so, the 
MaaS paradigm, as envisioned by Cloud Manufacturing, allows the creation of dynamic production lines on-demand, by 
composing the pool of configurable manufacturing capabilities according to a pay-as-you-go business model. The objective 
is to connect customers to those providers who can best meet their product and process specifications and requirements, 
while limiting unit production cost and time. This model is also regarded as a more environmentally sustainable future for 
the manufacturing industry as a whole [6].

Critically, automation is key to achieve the MaaS vision: only minimal management effort or explicit customer-provider 
interaction can be assumed, so the fundamental requirement for MaaS is the ability of a facility participating in the cloud to 
autonomously assess, in real time, whether a given product can be manufactured in that facility. If the product can be man-
ufactured, the facility may bid for the product, taking into account the overheads in terms of logistics. In mass production, 
the process planning phase, which transforms a process specification in concrete and practical production schedules for the 
resources on the shop floor, i.e., the process plan, is carried out by manufacturing engineers, and is largely a manual activity. 
In a MaaS approach, however, manual creation of process plans is clearly uneconomic for small batch sizes, and the time 
required to produce a plan is too great to allow facilities to bid for products in real time. Instead, manufacturing facilities 
must be able to automatically synthesize process plans for novel products ‘on the fly’. To automatically establish that a facility 
can manufacture a product, the abstract manufacturing tasks in the process recipe—the specification of how the product is 
to be manufactured—must be ‘matched’ against the available manufacturing resources in the facility. The resulting process 
plan details the low-level tasks to be executed and their order, the manufacturing resources to be used, and how materials 
and parts move between resources [7]. The process plan controller, i.e., the control software that delegates the operations in 
the plan to the appropriate manufacturing resources, is then synthesized. In doing so, no sensitive information about the 
resources and internal processes of the selected facilities should be exposed on the cloud platform.

Research in Artificial Intelligence and Computer Science can be exploited to provide a mathematical foundation for these 
domain concepts, and to solve the core challenges implicit in the MaaS vision. This is confirmed by recent efforts in basing 
MaaS on fundamental ideas coming from the literature on service composition in CS and behavior composition [8] in AI, so 
as to formalize the requirements and techniques for the automated synthesis of process plan controllers in the context of 
manufacturing [9–13]. These approaches have proven fruitful for developing preliminary and ‘proof-of-concept’ approaches 
for MaaS beyond the disciplines in which they were developed [14,15].

However these approaches are based on a propositional description of the states of the devices, workpieces and processes, 
which is too idealized and insufficient to achieve a fully-fledged solution in practice. Indeed, manufacturing processes de-
pend, in general, on the objects and data they produce and consume, including the cases where an unbounded number of 
product items (e.g., each with a unique serial number) or basic parts (e.g., each with a unique bar code, RFID tag or MAC 
address) must be produced. The approaches above do not explicitly account for this dependency, as they employ a finite 
state representation which hides important relationships between processes and data and, more importantly, cannot deal 
with a potentially unbounded number of objects. While in some cases this limitation can be circumvented, the resulting 
discretization is unwieldy and unnatural. For instance, one needs to directly encode into the process itself all the relevant 
dynamic knowledge, such as the current state of a part (e.g., painted, defective, etc.) or the state of a shared resource (e.g., 
a conveyor belt).

Instead, a concrete and realistic approach for MaaS necessarily requires a rich, relational description of states, an infor-
mation model, as well as advanced computational techniques that are able to manipulate such relational representations. 
Although some previous work exists which can be used as the basis of an unambiguous description of the manufacturing 
concepts [16], the scientific literature has been lacking until now.

Our work here addresses exactly this point, by offering a “data-aware” process formalization in which data and objects 
are treated as first-class citizens. More specifically, we propose a relational representation of the states by relying on the 
research on reasoning about actions in AI. We see the operations in manufacturing processes as described by an action 
theory in logic, and the processes as high-level programs over such action theories. In this way, we can leverage the first-
order state representations of action formalisms and the second-order/fixpoint characterization of state-change as provided 
by programs. Critically, we do not rely on ad-hoc representations, but we choose to adopt one of the most well developed 
formalisms for representing and reasoning about dynamic systems in AI, namely the Situation Calculus, to encode infor-
mation models and how they change as the result of actions. In fact, we deal with multiple Situation Calculus theories 
simultaneously, so as to model process recipes working over both an abstract information model and a concrete, facility-
level information model. Process recipes and manufacturing resources, in turn, are modeled as high-level ConGolog pro-
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grams [17] (over the action theories). All together, this yields a principled, formal and declarative representation of the MaaS
setting.

By exploiting this rich representation, we formally define what it means to realize a process recipe in a manufacturing 
facility and present techniques to automatically synthesize controllers that implement those realizations. We show that 
these techniques are actually effective, that is, that they correspond to algorithms for extracting the actual controllers, when 
the resulting Situation Calculus action theories are state-bounded [18].

In our context, state-boundedness means that, while the facility may process an infinite number of objects overall, an 
unbounded number of them is never “accumulated”: in any given state the number of objects being processed does not 
exceed a given bound. Notice that this case is the natural one in practice: the number of objects handled at a given time by 
the facility is naturally bounded by the size and structure of the shop-floor.

We stress that, technically and independently of the particular manufacturing setting in which we are interested, we pro-
vide here the first decidability result for controller synthesis in a setting with a relational/first-order state representation. 
We also observe that while our specific technical development is based on the Situation Calculus, our results and con-
structions can also be applied in other frameworks for reasoning about actions in AI as well as data-aware/artifact-centric 
processes frameworks in databases [19–21].

2. Situation calculus and ConGolog

The Situation Calculus [22,23] is a sorted predicate logical language for representing and reasoning about dynamically 
changing worlds. Changes in the world are the result of actions, which are terms in the language, and world histories are 
represented by situation terms. In addition to actions and situations, the language also includes an object sort, used to 
model the other entities. We assume a unique countably infinite set � of objects as the object sort. For all objects in � we 
have constants denoting them, called standard names, together with unique name assumption and domain closure [24,25]. 
This will allow us to fix a single interpretation domain for models of situation calculus formulas and blur the distinction 
between such standard names and objects of the domain. This way of proceeding is common in databases [26] and is 
convenient in our case because it makes it possible to denote each object and piece of information that is relevant for the 
manufacturing application.

We assume a finite number of (simple) action types, each of which takes a tuple of objects as arguments. For example, 
drill(part, dmtr, speed, x, y, z) represents the action of drilling a hole of a certain diameter, at a certain spindle speed, in a 
specific position of a given part. In the manufacturing domain, we are concerned with operations that may occur simulta-
neously [23,27–29], hence we adopt the concurrent, non-temporal variant of the Situation Calculus, where a concurrent or 
compound action a is a possibly infinite set of simple actions, like the one above, that execute simultaneously [23, Chapter 
7]. For example, {rotate(part, speed), spray(part, subst)} represents the joint execution of rotating a part at a given speed 
while spraying it with some substance. As shorthand, we denote by A(x) the compound action of type A with a vector x of 
arguments (of the right size, and assuming a standard ordering of simple actions so that their order can be ignored here). 
In the concurrent, non-temporal variant, situations denote histories that stem from performing sequences of compound ac-
tions. We denote by S0 the initial situation, i.e., the situation where no action has been performed yet, and assume that 
we have complete information about S0. The situation resulting from executing a compound action a in s is represented by 
the situation term do(a, s). Predicates whose value varies from situation to situation are called fluents and take arguments 
of sort object plus a situation term as their last argument. For example, we may write painted(part,s) to denote that a part 
is painted in situation s. These are the only fluents we consider, that is we deal with relational fluents only.

A basic action theory (BAT) [30,23] is a collection of axioms D describing the initial situation, preconditions and effects (and 
non-effects) of actions on fluents, as well as axioms for unique name assumptions and domain closure (for the object sort), 
which we denote, respectively, as Duna and Ddc . We denote by D0 the (complete) initial situation description, i.e., the set 
of axioms of D that describe the initial configuration of the world (which is unique, under complete information). Such a 
configuration corresponds to the extension of all the fluents of the theory in the initial situation S0. A special predicate 
Poss(a, s) is used to express that the simple action a is executable in situation s, and a precondition axiom specifies when 
the action can be legally performed. Formally precondition axioms have the form: Poss(a, s) ≡ ϕ(a, s) where ϕ(a, s) is a 
uniform Situation Calculus formula, that is a formula referring to only one situation s (the current one). Predicate Poss is 
extended to compound actions by writing Poss(a, s). Typically we can assume that each a ∈ a also needs to be possible by 
itself in the situation s (i.e., that Poss(a, s) and hence Poss({a}, s) ≡ Poss(a, s)), although Poss can be arbitrarily restricted 
further (as we will do in our running example). We say that a situation s is executable, denoted by Executable(s), if every 
(simple or compound) action performed in reaching s is possible in the situation in which it occurs [23].

Finally, a successor state axiom is used to encode causal laws specifying how each fluent changes as the result of executing 
(simple or) compound actions in the domain, encoding causal laws. There axioms have the form: f (x, do(a, s)) ≡ ϕ(x, a, s)
where ϕ(x, a, s) is again a uniform Situation Calculus formula over the current situation, which determines the value of the 
fluent f (x, s′) in the next situation s′ = do(a, s) resulting from executing a. Examples of BATs are provided in Section 5.

Note that, having assumed complete information on S0, BATs are categorical, i.e., they essentially admit a single 
model [23,25]. The adoption of standard names allows for using, in a BAT D , object names as constants. We call active 
object constants all the object names explicitly mentioned in the initial situation description D0 or in some precondition or 
successor-state axiom. In other words, these are all the constants mentioned in D but not in Duna or Ddc . Obviously, being 
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standard names, active object constants are always interpreted as themselves. The set of active object constants in a BAT D
is denoted as ACD , possibly without subscript if no ambiguity may arise.

Complex manufacturing processes are specified using high-level programs. They are “high-level” in that they comprise 
actions and tests that belong to the domain of concern (rather than based on classical variables and assignment), and they 
are meant to be executed against a theory of actions. In the Situation Calculus, several such languages have been developed, 
such as Golog [17], which includes the usual programming constructs as well as constructs for nondeterministic choices, 
ConGolog [31], which extends Golog to accommodate concurrency, and IndiGolog [25], which provides means for interleaving 
planning and execution.

We specify programs in a variant of ConGolog without recursive procedures [31] and where the test construct yields no 
transition and is final when satisfied [32,33]. This results in a synchronous test construct that does not allow interleaving 
(every transition involves the execution of an action). These are the ConGolog constructs we consider:

a simple or compound action
φ? test for a condition
δ1; δ2 sequence
δ1 | δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
δ1‖δ2 interleaved concurrency

where a can be a simple action (as in [31]), but also a compound action (these are the atomic instructions we use most 
in our setting) and φ is a situation-suppressed (uniform) Situation Calculus formula, i.e., a formula in the language with all 
situation arguments in fluents suppressed. We denote by φ[s] the (uniform) Situation Calculus formula obtained from φ by 
restoring the situation argument s into all fluents in φ. We require that the variable x in programs of the form πx.δ ranges 
over objects, and occurs in some action term in δ, i.e., πx.δ acts as a construct for the nondeterministic choice of action 
parameters.

Programs are executed over a BAT D (or Situation Calculus action theory, in general). This means that the fluents men-
tioned in tests and conditions must be those in the BAT D . Similarly, all constants mentioned in a program δ come from 
the set ACD of D ’s active object constants.

The semantics of ConGolog is specified in terms of single-steps, using the following two predicates [31]: Final(δ, s), spec-
ifying that the program δ may terminate in situation s, and Trans(δ, s, δ′, s′), specifying that one step of program δ in 
situation s may lead to situation s′ with δ′ remaining to be executed. The definitions of Trans and Final for the standard 
ConGolog constructs are given by:

Final(a, s) ≡ False
Final(φ?, s) ≡ φ[s]
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(πx.δ, s) ≡ ∃x.Final(δ, s)
Final(δ∗, s) ≡ True
Final(δ1‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Trans(a, s, δ′, s′) ≡ s′ = do(a, s) ∧ Poss(a, s) ∧ δ′ = ε
Trans(φ?, s, δ′, s′) ≡ False
Trans(δ1; δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′

1, s′) ∧ δ′ = δ′
1; δ2 ∨ Final(δ1, s) ∧ Trans(δ2, s, δ′, s′)

Trans(δ1 | δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′)
Trans(πx.δ, s, δ′, s′) ≡ ∃x.Trans(δ, s, δ′, s′)
Trans(δ∗, s, δ′, s′) ≡ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; δ∗
Trans(δ1‖δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′

1, s′) ∧ δ′ = δ′
1‖δ2 ∨ Trans(δ2, s, δ′

2, s′) ∧ δ′ = δ1‖δ′
2

Above, we use ε to denote the empty program. In fact ε is simply an abbreviation for True?. Note that the condi-
tional and while-loop constructs are definable: if φ then δ1 else δ2 endIf = φ?; δ1|¬φ?; δ2 and while φ do δ endWhile =
(φ?; δ)∗; ¬φ?. Also, we denote by loop : δ the program δ∗ to make the nondeterministic iteration more evident.

A configuration is a pair 〈δ, s〉 with program δ and situation s, hence Trans denotes one-step transitions between con-
figurations and Final denotes when a configuration is final. We use Trans∗ to denote the transitive closure of Trans, i.e., 
Trans∗(δ, s, δ′, s′) means that there exists a sequence of one-step transitions evolving the configuration 〈δ, s〉 into the con-
figuration 〈δ′, s′〉. By using Trans∗ we can define Do(δ, s, s′) as an abbreviation for ∃δ′. Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′) stating 
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that the complete execution of the program δ from s results in the new situation s′ [17,31]. Both Trans∗ and Do can be easily 
defined in second-order logic by using Trans and Final.

It is important to notice that when we have complete information on the initial situation in a BAT, Trans, Final, Trans∗
and Do are unequivocally defined by the model of the BAT. That is, the BAT, together with the definition of Trans, Final, 
Trans∗ and Do is, again, categorical [31]. Moreover, since in our case the object domain consists of the standard names �, 
we have a syntactic denotation of each object, situation and program (and thus configuration). This allows us to blur the 
distinction between the semantic and syntactic objects of our formalization and switch back and forth seamlessly between 
the semantic and syntactic notions of configurations. Observe that, although unique, the BAT model has an infinite object 
domain, as well as infinite situations and programs. This makes working with such models nontrivial and substantially 
different from the way they are dealt with in model checking [34,18,35].

3. A variant of ConGolog for manufacturing

The standard constructs of ConGolog are not sufficient to express ‘simultaneous’ execution of processes in manufacturing. 
For this reason, we extend ConGolog with a new construct to model the simultaneous operation of two (or more) manufac-
turing resources: the synchronized concurrency operator δ1|||δ2 is used to represent the synchronized concurrent execution 
of programs δ1 and δ2—their next actions take place in the same transition step.

Moreover, we want our theories to be able to allow the synchronous execution of a set of actions even if they are not 
executable by themselves. The underlying assumption here is that a number of sub-systems (in our domain, manufacturing 
resources) can legally perform a joint step only if this is explicitly deemed possible by a “global” BAT for compound actions. 
This gives us complete control when modeling manufacturing facilities, and allows to capture arbitrary constraints on the 
usage of the resources available. For instance, to lift a heavy object we may necessarily need two robots to perform a lifting 
action at the same time on the same object, while the individual action of lifting an object may not be allowed by the 
individual theories of these robots when they are considered in isolation.

To capture this, the semantics of ||| is defined as follows:

Final(δ1|||δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s);
Trans(δ1|||δ2, s, δ′, s′) ≡ Trans′(δ1, s, δ′

1, s′
1) ∧ s′

1 = do(a1, s) ∧
Trans′(δ2, s, δ′

2, s′
2) ∧ s′

2 = do(a2, s) ∧
Poss(a1 ∪ a2, s) ∧ δ′ = (δ′

1|||δ′
2) ∧ s′ = do(a1 ∪ a2, s),

where Trans′ has analogous axioms as Trans except for two modifications:

1. For simple and compound actions, Trans′(a, s, δ′, s′) ≡ s′ = do(a, s) ∧ δ′ = ε .
2. Trans′(δ1|||δ2, s, δ′, s′) does not require that Poss(a1 ∪ a2, s) be true.

This allows us to capture executability of compound actions without necessarily requiring the executability of (subsets of) 
their component simple actions: in the above, we impose Poss(a1 ∪ a2, s) without requiring also Poss(a1, s) and Poss(a2, s), 
although this can be explicitly required in the BAT (above, we implicitly extended the union operator to simple actions).

Observe that δ1|||δ2 requires both δ1 and δ2 to execute one (possibly compound) action at each step. In case one program 
requires more steps than the other to reach a final configuration, they cannot be executed in a synchronized, concurrent 
fashion. However, a program may include “no-op” actions to explicitly model when the resource can remain idle.

Finally, note that synchronized concurrency is distinguished from interleaved concurrency. For example, in the program 
δ1‖δ2, it is legal to execute either δ1 or δ2 completely before even starting the other, and it also legal to switch back and 
forth after each of their primitive actions. This is not possible with the synchronized concurrency program δ1|||δ2, under 
which both δ1 and δ2 must execute an action at each step.

4. Manufacturing as a service

In this section we describe, in abstract terms, the MaaS model which we will formally capture through the logical 
framework illustrated in the next section. Specifically, we consider a type of MaaS setting as those recently envisioned by 
Cloud Manufacturing approaches, as discussed in Section 1. In this model, we consider a set of manufacturing facilities, 
each consisting of a set of configurable manufacturing resources that can be rapidly provisioned and released with minimal 
management effort or provider interaction. Examples of resources are CNC machines, robots and tools in flexible production 
lines. Facilities can join a manufacturing cloud to offer their production capabilities to cloud users (i.e., product designers) 
who wish to have their products manufactured. In turn, a user can submit to the cloud system a product model, i.e., the 
(process) recipe, that is a representation of the activities that are to be executed in order to complete an instance of the 
product. For simplicity, we assume that a product is entirely described by a single process recipe, although one could 
consider a hierarchical subdivision in multiple sub-assemblies and, thus, process recipes.

The main objective is to assess whether the product is manufacturable, that is, it can be manufactured through the 
cloud and, if so, to compute exactly how. The product can be manufactured if the recipe can be manufactured in a facility, 
5
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cloud level

facility level

DF

Dn. . .D1

δ0
R

δ0
F := δ1||| · · · |||δn

δ1, . . . , δn

recipe

resource processes

facility process

processes:information models:

mappings controller

Fig. 1. Framework for MaaS, divided into a cloud level and a facility level (only one facility is shown). A facility is constituted of a facility information model 
DF , a facility process δ0

F , the mappings (and thus the cloud information model DR as well).

that is, if an implementation of all the possible sequences of resource-independent operations, therein prescribed, can be 
delegated at each step to the resources in the facility, also taking care of all the low-level additional operations that may 
be required (which, being dependent on the facility and its resources, are not included in the recipe). Indeed, a process 
recipe is a resource-independent process, designed by the product designer without any specific knowledge or assumption 
on the manufacturing system that will be selected for its implementation, and it thus assumes an information model that 
is common throughout the cloud. A MaaS model must then be able to bridge the gap between such abstract representation 
and the description of the physical manufacturing processes that each facility can execute, according to the resources that 
are available in the facility.

When the product is manufacturable in a facility, the module responsible for delegating actions in the recipe to resources 
(we refer to such delegation as either realization or orchestration) is called a process plan controller, or simply a controller. 
In contrast to mass production, where process planning is carried out by manufacturing engineers and is largely a manual 
activity, this setting requires facilities to be able to bid for products in real time, that is, to be able to automatically check 
whether a novel product is manufacturable and, if so, synthesize a controller ‘on the fly’ prior to submitting a bid.

Following these observations, we can provide a specific MaaS framework whose basic components match the core ele-
ments of a MaaS paradigm. This is illustrated in Fig. 1, where two distinct sorts are considered:

1. An information model D describes the data and the physical objects manipulated by processes, as well as the operations 
used to manipulate them.

2. A process δ describes the sequencing of the operations and captures the specific capabilities and the dynamic behavior 
of a component.

The various components that form our MaaS framework can be described as follows. An example will be given in the 
next section, where these concepts are presented in detail. For now, we focus on highlighting the role that each of these 
components has, their internal structure, and their relationship. For simplicity, as reflected in Fig. 1, we restrict ourselves to 
describe a single facility within the manufacturing cloud:

1. Resources: these are the physical manufacturing resources on the shop floor of a facility. Each resource is a couple 
〈Di, δi〉, with i ∈ {1, . . . , n}, that has its own information model Di and its own resource process δi , as these resources 
are typically sold by different companies. The actions and possible data in each Di typically include low-level details.

2. Facility information model: it is the information model DF for the facility, obtained by combining the information models 
Di of each resource on the shop floor. It is the responsibility of the system integrator of the facility to suitably combine 
the information models of the resources.

3. Facility process: it is the process δ0
F resulting from the synchronous, concurrent execution of the process δi of each 

resource. Synchronous concurrency is needed to capture the fact that resources can (and may be required to) execute 
actions at the same time and on the same objects.

4. Cloud information model: it is the information model DR , common throughout the cloud, that is assumed by any recipe 
that can be designed. It is the core component of the framework whose existence precedes any other component. It 
represents a resource-independent information model of the data and objects that the recipes manipulate, and through 
which they are modeled. DR is developed by the manager of the cloud infrastructure.

5. Mappings: a set of mappings Maps represents the mechanism for relating the cloud information model DR , which 
is resource-independent, to the facility information model DF , that is resource-dependent. Maps relates the possible 
abstract executions described by the process recipe δ0

R (see below) with the concrete executions of the facility process 
δ0

F . In fact we need two forms of mappings: the first relates the data and objects in DR to those in DF; the second relates 
operations in DR to possibly complex sub-processes that are required to implement them in the facility, according to DF . 
Operationally, these mappings are specified only once, namely when a facility joins the manufacturing cloud: the system 
6
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integrator of the facility, who has access to both DF and DR , is responsible for engineering them, although automation 
is also possible. These mappings are essential for the MaaS framework to be able to check the manufacturability of the 
product in a facility (and compute the controller) without exposing any internal detail, such as the number and type of 
resources or their processes. As depicted in Fig. 1, the controller component is not at the cloud level but at the level of 
the facility: privacy is a critical requirement in MaaS.

6. Facility: by putting together some of the components above, a manufacturing facility is captured as a tuple Fac =
〈DR, DF, δ0

F , Maps〉, where DR is the cloud information model (which is fixed), DF is the facility information model, δ0
F

is the facility program and Maps is the set of mappings as above.
7. Recipes: a recipe is a resource-independent process δ0

R designed by a product designer without any specific knowledge 
or assumption on the manufacturing facility that will be selected for its realization. The information model describing 
the operations that compose the recipe is the cloud information model DR . The product designer can access DR to 
design the recipe but cannot alter it.

8. Controller: when a controller exists for a given recipe and facility, i.e. when the product is manufacturable, this compo-
nent is responsible for realizing the recipe by orchestrating the resources in the facility. It can be informally understood 
as a function relating each possible execution of the recipe δ0

R to one execution of the process δ0
F of the facility. It is not 

a cloud-level entity, and it is never exposed outside of the organization that owns the facility.

Given a facility Fac = 〈DR, DF, δ0
F , Maps〉 and a recipe δ0

R , the manufacturability problem amounts to establishing whether 
there exists a controller to orchestrate the resources in the facility Fac to realize the recipe δ0

R . The synthesis task is to 
automatically build the controller responsible for implementing the orchestration.

5. Manufacturing as a service in the situation calculus

In this section we detail how the framework above is formally captured in our approach. We see the actions in manufac-
turing processes as described by an action theory in logic, and processes as high-level programs over such action theories. 
In this way, we can leverage the first-order state representations of action formalisms and the second-order/fixpoint charac-
terization of state-change as provided by programs. We now formalize each framework component and provide examples.

5.1. Resources

As shown in Fig. 1, a facility is composed of n manufacturing resources 〈Di, δi〉, each identified by an index i ∈ {1, . . . , n}. 
We formalize the information model Di of each resource i as a BAT Di (we overload symbols used in the MaaS framework 
itself), which specifies the resource’s initial configuration and the actions it can execute (as a specification of fluent’s dy-
namics through precondition and successor-state axioms). For convenience, we include the resource index i (a constant) as 
the last argument of all actions, as this will be useful when combining all these theories together. The resource process δi

is formalized as a CongGolog program δi over the BAT Di .

Example 1 (Resources – based on the cell described in [36]). Consider a manufacturing cell consisting of five resources. Resource 
〈D1, δ1〉 is a robot that is able to perform different operations on parts by (autonomously) equipping the appropriate end 
effector ee, from a nearby rack, using the action equip(ee,1). An end effector is a device or tool connected to the end of a 
robot arm, the nature of which depends on the intended task: by equipping a driller it can drill parts; by equipping a rivet 
gun it can apply rivets. The BAT D1 specifies when this simple action is possible for this resource:

Poss(equip(ee,1), s) ≡ has_effector(ee,1, s) ∧ ¬∃e. equipd(e,1, s)

that is, when the end effector is available on the rack and there is no end effector already equipped by the arm.
The Poss predicates for other actions are specified in the same way. The drilling operation is modeled as the ac-

tion robot_drill with arguments part , bit , dmtr, speed, f eed, x, y, z for the id of the part (i.e. the workpiece), 
the drilling bit id, the diameter, the spindle speed, the feed rate, and hole position. For instance, a fully spec-
ified action is robot_drill(p,bit1,.7,215,.2,123,87,12,1). The riveting action is analogous, and we represent it as 
rivet(part, rivet_type, x, y, z,1). Additional operations are start_compressor(1) for charging the compressor of the rivet gun (al-
ways possible); unequip(1) for unequipping the current end effector and place it back on the rack; set_bit(bit,bit_type,dmtr,1)

for changing the drilling bit (for simplicity, we assume a rack of drill bit holders which can be changed autonomously, but 
it is also possible to use this action to model the fact that the robot returns to a default position to allow an operator to 
perform the tool change). For instance, we consider:
7
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loop :
in(part,1)
| if ¬equipd(driller,1) then equip(driller,1) endIf ;

nop
∗ ;

if ¬has_bit(bit_type,dmtr,driller,1) then set_bit(bit,bit_type,dmtr,1) endIf ;
robot_drill(part,bit,dmtr, speed, f eed, x, y, z,1)

| if ¬equipd(rivet_gun,1) then equip(rivet_gun,1) endIf ;
nop

∗ ; rivet(part, rivet_type, x, y, z,1) ;
if ¬charged(compressor,1) then start_compressor(1) endIf

| out(part,1)

| unequip(1)

| nop

Fig. 2. The resource program δ1, representing a robot arm with two end effectors. The resource cannot equip an end effector and then not use it, nor 
attempt to equip it if already mounted on the arm. Similarly, the robot cannot release the part if in the process of drilling or riveting it. Note that these 
constraints are not aimed at capturing preconditions of actions, which are instead specified in the BAT Di via Poss, but rather the control logic governing 
the robot, which is dictated by the resource’s own design. The actual executions that are possible will depend on the interplay of the program, the BAT and 
the current situation, at each step.

Poss(robot_drill(part,bit,dmtr, speed, f eed, x, y, z,1), s) ≡
equipd(driller,1, s) ∧ material(part,m) ∧ suitable(bit,dmtr,m) ∧
(at(part,1, s) ∨ within_reach(part,1, s)) ∧ part(part, s) ∧ safe(1, s)

Poss(rivet(part, rivet_type, x, y, z,1), s) ≡ equipd(rivet_gun,1, s) ∧
drilled(part,hole(x, y, z), s) ∧ charged(compressor,1, s) ∧
(at(part,1, s) ∨ within_reach(part,1, s)) ∧ part(part, s) ∧ safe(1, s)

Poss(set_bit(bit,bit_type,dmtr,1), s) ≡ tool_bits(bit,bit_type,dmtr)

where at(part, i, s) is a fluent used to specify that a part is currently allocated to the resource i, and which we assume to 
be included in the BAT of every resource. Similarly, within_reach(part, i, s) specifies that the work piece part is within the 
envelope of the resource, so that it can either be moved on the working area, or operations can be performed on part
from a distance. Static relation tool_bits(bit, bit_type, dmtr) represents the catalogue of tool bits available in this facility. We 
also use situation dependent or independent fluents, which for simplicity we assume to be available in each BAT of each 
resource i, to denote that a part exists in the cell, that a hole has been drilled in a part by a resource, that a part has a 
certain material, that it is safe for the robot to move the arm, etc. We will give examples of their successor-state axioms 
later.

Moreover, parts are moved between resources by a part-handling system, which is typically a collection of conveyor belts 
or similar pieces of equipment, although it is also possible that parts are explicitly exchanged by the resources themselves 
(e.g., robots). We model this by using special actions in(part, i) and out(part, i) for each resource i, denoting that a part is 
moved into or out of the work area of the resource, respectively. This allows us to model either the physical movement of 
the part from/to the part-handling system or the acquisition/release of the exclusive access lock to the part. This approach 
makes sure that at most one resource is allocated a part (although other resources may be required to assist in complex 
machining or assembly operations, as we will show later). For the in and out actions, we assume the following axioms to 
impose that each resource can hold at most one part at a time (larger bounds can be modeled in a similar way):

Poss(in(part, i), s) ≡ part(part, s) ∧ within_reach(part, i, s) ∧ ¬∃p. at(p, i, s)
Poss(out(part, i), s) ≡ part(part, s) ∧ at(part, i, s)

Finally, a special action nop, also common to all resources, can be used to keep the resource idle. The ConGolog program 
δ1 (capturing the resource process) is shown in Fig. 2. Note that all free parameters are implicitly existential (i.e., in the 
scope of a choice π ).

We model the other resources in a similar way. 〈D2, δ2〉 is a fixture that can perform an action hold_in_place(part, force,2), 
with a given clamping force. Resource 〈D3, δ3〉 is a robot that can move parts into and out of the cell from an 
external conveyor or pallet, position a part at a given location relative to another part (creating a single compos-
ite part as output), and, by equipping either a flat or hollow end effector, apply pressure to a part that is being 
worked on by another resource (hollow for drilling or milling, flat for riveting). These operations correspond to the ac-
tions in_cell(part, weight,material,dimx,dimy,dimz,3), out_cell(part, code,3), position(part1, part2, part, x, y, z,3), pressure(part,

force, 3). These actions for 〈D2, δ2〉 and 〈D3, δ3〉 have the following preconditions:
8
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loop :
nop | (in(part,2) ; (nop | hold_in_place(part, f orce,2))∗ ; out(part,2))

loop :
in(part,3)

| (equip(pressure_hollow,3) | equip(pressure_flat,3)) ;
nop

∗ ; pressure(part, f orce, type,3)∗ ; unequip(3)

| equip(gripper,3) ; position(part1, part2, part, x, y, z,3)
| in_cell(part, weight,material,dimx,dimy,dimz,3)
| out_cell(part, code,3)

| nop

Fig. 3. Resources programs δ2 and δ3.

Poss(hold_in_place(part, force,2), s) ≡ part(part, s) ∧ at(part,2, s)
Poss(in_cell(part, weight,material,dimx,dimy,dimz,3), s) ≡ part(part, s) ∧ on_site(part, s) ∧ safe(3, s)
Poss(out_cell(part, code,3), s) ≡ part(part, s) ∧ at(part,3, s) ∧ status(part, code, s) ∧ safe(3, s)
Poss(position(part1, part2, part, x, y, z,3), s) ≡ ¬∃p. holding(p,3, s) ∧ ¬part(part, s) ∧

part(part1, s) ∧ part(part2, s) ∧ at(part1,3, s) ∧ within_reach(part2,3, s) ∧ safe(3, s)
Poss(pressure(part, f orce, type,3), s) ≡ part(part, s) ∧

(at(part,3, s) ∨ within_reach(part,3, s)) ∧ ((equipd(pressure_flat,3, s) ∧ type=flat)

∨ (equipd(pressure_hollow,3, s) ∧ type=hollow)) ∧ safe(3, s)

For instance, the first specifies that 〈D2, δ2〉 can hold in place parts that are physically brought to the fixture. The fourth 
one specifies that 〈D3, δ3〉 can position a part part1 onto a part part2 to create a composite part part if the resource is not 
holding anything (with its arm), part is not yet a physical part, part1 is allocated to the resource whereas part2 is within 
reach (e.g., held by another resource), and finally that the resource is in a safe condition to operate. The last one specifies 
that 〈D3, δ3〉 can apply pressure to a part part that is either allocated to the resource or is within reach, provided that the 
right type of pressure applicator is already equipped and that the resource is in a safe condition to operate. The processes 
for these resources are represented by the ConGolog programs δ2 and δ3 in Fig. 3.

Note that the information about the weight, material and size of parts loaded into the cell is made available by the 
arguments of in_cell, so that new fluents are added to the extension to represent information about fresh workpieces (see 
successor-state axioms, further below). As a restriction, one is not allowed to use operators that are not axiomatized in the 
theories themselves (e.g., to write dimx(part, x)∧ ≥(x, 30) to check that a part is wider than 30 inches), but we can assume 
discretized intervals for each numeric parameter, and consider fluents such as dimx(part,wide).

Resource 〈D4, δ4〉 is an upright drilling machine for drilling parts with high precision. Finally, 〈D5, δ5〉 is a human oper-
ator, who can operate the drilling machine by executing the action operate_machine(4,5), can physically enter/exit the cell 
with enter(5) and exit(5), can bring small parts into the cell with in_cell(part, · · · ,5), and can apply glue to parts with 
spray_glue(part, glue_type,5). Hence, in D4 (drilling machine) we have the precondition axiom:

Poss(machine_drill(part,bit,dmtr, speed, f eed, x, y, z,4), s) ≡
material(part,m) ∧ suitable(bit,dmtr,m) ∧ at(part,4, s)

and in D5 (human operator):

Poss(in_cell(part, weight,material, · · · ,5), s) ≡ on_site(part, s) ∧ size(part,small)
Poss(spray_glue(part, glue_type,5), s) ≡ within_reach(part,5, s) ∧ avail(glue_type)
Poss(safety_switch(5), s) ≡ true

while the processes for these resources are represented by the ConGolog programs δ4 and δ5 in Fig. 4.
According to δ5, the human operator essentially has two distinct sets of available operations when they are inside and 

outside the cell (the fluent entered(5) is of course affected by the execution of enter(5) and exit(5)). Note how the operator 
is required (by safety regulations) to always operate a safety switch immediately before and after entering or exiting the 
cell. Nonetheless, the BATs for the robots are “unaware” of the existence of such an action: the Poss axioms for the robots 
mention a fluent safe(i, s) that must be tested for machining or assembly actions (as the robot arm may need to move 
within its spatial envelope), but there is still no relation between the value of this fluent and the execution of safety_switch, 
as these belong to different BATs. An analogous consideration applies to the fluent within_reach(part, i, s), as this would 
require to talk about other resources nearby. This will be covered in the next section, when we will show how the BATs 
for individual resources are merged in a semi-automated fashion into a single DF , namely the facility information model, as 
depicted in Fig. 1. For now, we can assume:
9



G. De Giacomo, P. Felli, B. Logan et al. Artificial Intelligence 302 (2022) 103598
loop :
in(part,4) | machine_drill(part,bit,dmtr, speed, f eed, x, y, z,4) | out(part,4) | nop

loop :
if entered(5) then

in(part,5) | spray_glue(part, glue_type,5) | operate_machine( j,5) |
in_cell(part, · · · ,5) | out(part,5) | (exit(5) ; safety_switch(off,5)) | nop

else (safety_switch(on,5) ; enter(5)) | nop endIf

Fig. 4. The remaining resource programs δ4 and δ5.

safe(i, s) ≡ true

within_reach(part, i, s) ≡ at(part, i, s)

Finally, examples of successor-state axioms for (some of) the fluents mentioned in the BATs above are listed below (they 
are assumed to be the same in each BAT). For conciseness, and whenever needed, we denote by x, y and z the parameters 
that appear as dots in the fluents within the scope of quantifiers.

equipd(e, i,do(a, s)) ≡ a = equip(e, i) ∨ (equipd(e, i, s) ∧ a �= unequip(i))
part(part,do(a, s)) ≡ ∃y. (a = in_cell(part, · · · ) ∨ a = position(·, ·, part, · · · )) ∨

(part(part, s) ∧ ¬∃x. a = out_cell(part, · · · )
at(part, i,do(a, s)) ≡ a = in(part, i) ∨ (∃y. a = position(·, part2, part, · · · ) ∧ at(part2, i, s)) ∨

∃x. a = in_cell(part, · · · , i) ∨ (at(part, i, s) ∧ a �= out(part, i) ∧ ¬∃z. a = out_cell(part, · · · ))
material(part,material,do(a, s)) ≡ ∃y. a = in_cell(part, · · · ,material, · · · ) ∨

(material(part,material, s) ∧ ¬∃x. a = out_cell(part, · · · ))
drilled(hole(part, x, y, z),do(a, s)) ≡ ∃y. (a = robot_drill(part, · · · , x, y, z, ·) ∨

a = machine_drill(part, · · · , x, y, z, ·)) ∨ (drilled(hole(part, x, y, z), s) ∧ ¬∃x. a = out_cell(part, · · · ))
For instance, the first states that an end effector e is equipped by a resource i either if the resource executes action 

equip(e, i) or e was already equipped by i and it is not removed. Similarly, a part exists after it is loaded into the cell if it is 
a composite part resulting from a positioning action or if already in the cell and not moved out of the cell. Analogously, the 
third one states that a part is allocated to resource i if it was moved to i or it is a composite part obtained by positioning 
another part on one that is in i.

The remaining predicates are situation-independent (such as tool_bits/3, avail/1 or suitable/3), that is, their extensions 
are included in the theories, but are not affected by actions as they capture instead domain knowledge (on materials, 
manufacturing transformations, etc.). �
5.2. Facility information model

The facility information model DF for the manufacturing facility is also formalized as a Situation Calculus BAT. It is in 
this model that a system integrator will combine, in a semi-automated manner, all information models D1, . . . , Dn of the 
resources, e.g., by taking into account knowledge about which resources are connected by the part-handling system, which 
subsets of resources can work on the same parts, which compound actions are meaningful, etc.

To formalize the facility information model as a Situation Calculus BAT DF from the BATs D1, . . . , Dn of the resources 
we need to follow several steps:

1. Define the initial situation description for situation S0
F in the BAT DF as the union of the descriptions D0

i of the BAT of 
the resources, D0

F =D0
1 ∪ · · · ∪D0

n .
2. Define the successor-state axioms of fluents for compound actions. This is done by trivially extending the successor-

state axioms for simple actions that are in the BATs D1, . . . , Dn .
3. Define the Poss predicate for all and only the exact compound actions that are deemed meaningful, and establish 

whether each of these compound actions also requires the executability of its constituent simple actions as defined 
in D1, . . . , Dn . Recall that Poss(a, s) does not imply, in general, Poss(a, s) for every a ∈ a (see Section 3, including the 
definition of Trans(δ1|||δ2, s, δ′, s′)).

4. In doing the above, possibly introduce situation-independent fluents (with their definitions) that may be needed to 
relate the value of fluents in the various resources and to facilitate the writing of the axioms in the theory.

Note that the set of fluents in DF is FF = ⋃
i FDi , since we do not need to include the situation-independent fluents 

mentioned above (which can be seen as abbreviations). The set of active object constants mentioned in DF is ACDF =⋃
i ACD . Also, we denote by AF the set of action types in DF .
i
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The resulting BAT DF allows for capturing any possible execution of the facility that is composed of meaningful com-
pound actions. Note however that this does not capture any knowledge about the manufacturing transformations yet, i.e., the 
designed (sub)programs which lead to an increase of value of workpieces (such as a set of possibly complex sequences of 
actions that collectively implement the drilling, polishing, painting, etc. of a workpiece, and which typically include various 
steps and also auxiliary compound actions and tests). This notion will be modeled in Section 5.5.

Example 2 (Facility information model). Consider the manufacturing cell from the previous example. To be able to integrate 
all resources together, one needs to address various aspects, of which we consider only a few. First, successor state axioms 
have to consider compound actions. For instance, the first successor state axiom listed at the end of Example 1, in the 
previous section, trivially becomes:

equipd(e, i,do(a, s)) ≡ equip(e, i) ∈ a ∨ (equipd(e, i, s) ∧ unequip(i) /∈ a)

Second, we have to take into account the layout of the shop floor, i.e., specify which resources can collaborate for execut-
ing a compound action (while the rest remain idle). We do so by a special situation-independent predicate coopMatrix(i, j)

specifying that resource 〈Di, δi〉 can cooperate with resource 〈D j, δ j〉, that is, it can perform an action on a part that is 
currently allocated to the other (i.e. such that at(part, j, s) holds). Hence we axiomatize in DF the within_reach fluent (so 
far assumed to be such that within_reach(part, i, s) ≡ at(part, i, s) – see Example 1 in the previous section) as follows:

within_reach(part, i, s) ≡ ∃ j. j �= i ∧ at(part, j, s) ∧ coopMatrix(i, j)

We also connect the action safety_switch of the operator with the two robots in the cell by the successor-state axiom:

safe(i,do(a, s)) ≡ (safe(i, s) ∧ ¬∃ j. safety_switch(off, j) ∈ a) ∨ ∃ j. safety_switch(on, j) ∈ a)

Third, once this step is completed (for all predicates, as needed), one needs to define the Poss predicate of compound 
actions. DF includes arbitrary axioms for this purpose, however the following two are typically needed:

Poss(a ∪ nop, s) ≡ Poss(a, s)
Poss({in(part, i), out(part, j)}, s) ≡ Poss(in(part, i), s) ∧ Poss(out(part, j), s) ∧ partHandling( j, i)

The first establishes that if an action a is executable, so is any compound action that is equal to a but to which nop

actions are added (note that nop actions can be executed by resources only when their program allows it). The second 
specifies the possible passing of parts between resources, as allowed by the part-handling system. It assumes a situation 
independent predicate partHandling/2 so that partHandling( j, i) specifies that, according to the layout of the shop floor, it 
is possible to move a part from resource i to resource j (typically by using fixed conveyors). This predicate can be easily 
replaced with a situation-dependent fluent.

Further, it remains to explicitly specify the Poss for the remaining compound actions that are meaningful in the facility 
although, in principle, it is also possible to automatically determine the preconditions for any compound action resulting 
from any possible combination of simple actions. For instance, in the running example we want to allow the compound 
action in which resource 1 (the first robot arm) performs a drilling operation on a part that is currently positioned on 
the fixture (resource 2), while resource 3 (the second robot arm) applies opposing pressure on the part (with a hollow 
pressure applicator). In this case we do not impose additional constraints, but we require the executability of these actions 
individually, according to the Poss of individual theories:

Poss({robot_drill(part, · · · ,1), hold_in_place(part, · · · ,2), pressure(part, · · · ,3)}, s) ≡
Poss(robot_drill(part, · · · ,1), s) ∧ Poss(hold_in_place(part, · · · ,2), s) ∧ Poss(pressure(part, · · · ,3))

In turn, according to D1-D3, this requires that the part is held on the fixture, that it is within the envelope of both 
robots, that the right drilling bit is in the end effector, etc. (see the Poss of these simple actions in Example 1).

According to the specification of Trans, by denoting the compound action above as {a1, a2, a3} for short (the order is 
irrelevant), in our example with five resources we have that if Trans(a1|||a2|||a3|||nop|||nop, s, δ′, s′) then it must be that 
Poss({a1, a2, a3, nop, nop}, s) and therefore Poss({a1, a2, a3}, s), as a result of Poss(a ∪ nop, s) ≡ Poss(a, s). Given the axiom 
above, this also implies Poss(ai) for i ∈ {1, 2, 3}, but this is not true in general (it is not required by Trans) and it can 
be determined case-by-case when generating DF . Also, it is not always the case that Poss({a1, a2, a3, nop, nop}, s) implies 
Poss({a1, a2, a3, a4, a5}, s) for any action a4, a5.

This gives the system integrator great freedom and flexibility, and it allows to encode arbitrary knowledge about the 
possible meaningful executions of a set of resources on the shop floor. �
5.3. Facility process

Given a set of n processes of manufacturing resources, each modeled as a ConGolog program δi over Di , i ∈ {1, . . . , n}, 
the resulting facility process δ0 is defined as the ConGolog program δ0 := δ1||| · · · |||δn over the BAT DF , which models 
F F
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the facility information model. Observe the use of the new synchronized concurrency operator introduced in Section 3. This 
operator executes all programs δi synchronously, generating a compound action from the actions in the various resources. In 
doing so, as explained in the previous section, it requires the executability of compound actions as defined in DF , without 
necessarily relying on the executability of their component actions as defined in the resources’ BATs D1, . . .Dn .

5.4. Cloud information model

As explained in Section 4, the cloud information model DR is the information model common throughout the cloud to 
be used by every recipe. It is the core component of our MaaS framework whose existence precedes any other component. 
It represents a resource-independent information model of data and objects the recipes manipulate, and on which they are 
expressed. The information model is specified by the manager of the cloud infrastructure.

We formalize DR as an action theory DR , which is a variant of a Situation Calculus BAT. Importantly, DR is specified 
without knowing the possible facilities in the cloud nor the resources available in each facility. For this reason, fluents in 
DR are abstract, and they are typically affected by the resource-independent actions used in recipes. The evolution of such 
fluents can be specified through the initial situation description D0

R of an initial situation S0
R of DR , and successor-state 

axioms in DR .
However, when specifying a recipe, we also want to use additional fluents whose interpretation is determined at runtime 

during the execution on an actual facility, i.e., during production. For instance, in a recipe we may need to prescribe a 
runtime test in order to determine how the manufacturing process should continue. We call such fluents observations and 
denote the set of observations by Obs. Note that the fluents in Obs are not determined by the initial situation description 
D0

R and they do not have successor-state axioms. Their evolution depends on how the cloud information model is coupled 
with the facility information model through the mappings, as described in the next section.

From the Situation Calculus point of view, the resulting action theory DR is a variant of a BAT (free-fluent BATs [37]), 
which omits successor-state axioms for the fluents in Obs. We denote such variants BAT− to stress this distinction. Observe 
that, even under complete information about the initial situation, a BAT− admits, in general, many models: without map-
pings relating observations to the actual facility, these fluents are free to take any extension at each situation. Nonetheless, 
as we formalize next, as we are capable of inspecting the facility to determine the extension of the fluent in Obs through 
the mappings, the resulting theory still admits a unique model. We will provide an example in the next section.

We denote by FR the set of fluents in DR , with Obs ⊆FR , and by ACDR the set of active object constants of DR . Finally, 
we denote by AR the set of action types in DR .

5.5. Mappings

In order to establish the manufacturability of a product by a facility, we need to define formal mappings between the 
abstract, resource-independent BAT− DR and the BAT DF . These mappings are computed for each facility when it joins the 
manufacturing cloud, either automatically or by hand [36]. Following the ideas in [38], we define such mappings as follows:

• For each action type A ∈ AR with parameters x, the action A(x) is mapped to a (arbitrarily complex) program δA(x)

in DF composed of physical (compound) actions of the available resources, augmented with, e.g., the passing of parts 
through the part-handling system, the equipping of end effectors, etc.

• For each fluent f ∈ FR with parameters x, the atomic formula f (x, sR) in the current situation sR is mapped to a 
(uniform) Situation Calculus formula ϕf (x, sF) over the fluents in FF of the facility information model. The mapping 
establishes that f (x, sR) in the current situation sR of the BAT DR on the recipe has the same extension as ϕf (x, sF) in 
the current situation sF on the BAT DF of the facility.
If f is an observation in Obs (i.e., without successor-state axiom, such as precision in Example 4) the mapping gives the 
extension to the observation f (x, sR). If instead f is not an observation in Obs, then the mapping imposes a consistency 
requirement between the two theories as the fluent f is constrained by the initial situation description and its successor-
state axiom in DR .

Summarizing, the mappings consist of a set Maps of mapping rules of two forms:

• Mapping rules for DR ’s actions of the form:

A(x) ↔ δA(x) (for each A ∈ AR )

where A(x) is an action type in AR with parameters x, and δA(x) is a program over DF with parameters x;
• Mapping rules for DR ’s fluents of the form:

f (x) ↔ ϕf (x) (for each f ∈ FR)

where f (x) is a fluent of DR with the situation argument suppressed and ϕf (x) is a situation-suppressed (uniform) 
Situation Calculus formula over DF .
12
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We impose two requirements on ϕf (x) as well as on formulas occurring in tests of δA(x). First of all, the active object 
constants mentioned in some mapping come from ACDF ∪ ACDR . Second, these formulas must be domain-independent [26]. 
In our context a (uniform) Situation Calculus formula ϕ is domain-independent if its evaluation depends only on the objects 
appearing in the extension of DF ’s fluents in the current situation, i.e., the active domain of the current situation, and not by 
other standard names in the domain �. One way to obtain domain-independence is to disallow negation ¬β and instead 
use logical difference α ∧ ¬β . Note that domain-independence is a standard requirement in databases that allows focusing 
on the active domain only, without loss of generality [26].

Example 3 (Mappings). To map the resource-independent drill action to a program specifying the possible ways in which a 
drilling operation can be performed in the facility of the running example, we specify:

{drill(part,dmtr, speed, x, y, z)} ↔ ( A1||| · · · |||An )∗ ; if size(part,large) then δ1
d

else δ1
d

| δ2
d

δ1
d
=π bit, feed, force, i, j,k.(pressure(part, f orce,hollow, i)|||

hold_in_place(part,3k, j) |||
robot_drill(part,bit,dmtr, speed, f eed, x, y, z,k))

δ2
d
=π bit, feed, i, j.(operate_machine(i, j)|||

machine_drill(p,bit,dmtr, speed, f eed, x, y, z, j))

where each Ai stands for πx. ai,1(x) | · · · | ai,qi (x): i.e., each resource may perform preparatory sequences of actions before 
the specified compound actions. Intuitively, the rule states that, in this facility, large parts can only be drilled by using three 
actions for clamping (with a fixed force), drilling and applying pressure with a hollow pressure applicator (for counterbal-
ancing the drilling pressure), whereas small parts may also be drilled by manually operating a drilling machine.

Note that these rules do not specify which resources should be used for a particular operation, hence in a large facility 
with many pieces of equipment this allows a high degree of flexibility in the allocation of resources to these tasks. In our 
simple example, with only five resources, such allocation is obvious (δ1

d
can be executed by selecting i=3, j=2, k=1, and δ2

d

by selecting i=5 and j=4).
We can write similar mapping rules for the fluent precision ∈ Obs, e.g., specifying how to observe the precision of a hole 

that was drilled:

precision(hole(part, x, y, z), precision) ↔ part(part) ∧ drilled(hole(part, x, y, z), i) ∧ prec_rating(precision, i)

This mapping captures the fact that the precision of drilled holes depends on the resource that was used for the drilling 
(in particular, on its precision rating), which is known only at runtime, i.e., during production. �

The mappings in Maps combined with the two theories DR and DF form a new theory, defined below. This is not a 
traditional Situation Calculus theory since it includes two situation sorts (instead of one), which are completely independent 
from each other, namely: SF for the facility information model DF , with initial situation S0

F ∈ SF , and SR for the cloud 
information system DR , with initial situation S0

R ∈ SR .
For sort SF we have that the value of fluents at each situation sF ∈ SF is completely determined by DF . Defining SR , 

instead, needs an additional effort, since the value of the fluents in Obs, after an action has been performed, depends 
only on the mappings in Maps. To handle this, we extend all action types A ∈ AR with an extra parameter sF ranging over 
situations from SF . Thus, every action a(x) with parameters x is turned into a corresponding action a(x, sF) with parameters 
x and sF . We then make the following changes to DR:

• Every DR ’s precondition axiom Poss(A(x), sR) ≡ 
(x, sR) is changed into

Poss(A(x, sF), sR) ≡ 
(x, sR)

that is, we ignore the newly introduced extra parameter.
• Every DR ’s successor state axiom f (x, do(A(y), sR)) ≡ 
(x, y, sR), for fluent f /∈ Obs instantiated on the action A(y), is 

changed into

f (x,do(A(y, sF), sR)) ≡ 
(x,y, sR)

that is, as before, we ignore the extra parameter.
• For each fluent f ∈ Obs with mapping f (x) ↔ ϕf (x), the following successor state axiom is defined:

f (x,do(A(y, sF), sR)) ≡ ϕf (x, sF)

where the formula ϕf (x, sF) is situation-invariant w.r.t. sR , i.e., its value depends only on the extra parameter sF added 
to action A.
13
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• Finally, the initial situation description D0
R is changed by adding f (x, S0

R) ≡ ϕf (x, S0
F ) for each f ∈ Obs, using, again, the 

mapping f (x) ↔ ϕf (x).

We denote the resulting theory as DMaps
R . Note that since the initial situation description of DF is complete, so is that of 

DMaps
R ; hence, by distinguishing the two situation sorts SR and SF for the situations, it follows that DMaps

R is categorical, i.e., 
admits essentially a unique model.

Among the situations of DMaps
R in SR , we are interested only in those that correspond to actual executions in DF , accord-

ing to the mappings Maps. In other words, we need to single out the situations sR ∈ SR and sF ∈ SF that correspond to each 
other, i.e., which are synchronized. These can be defined by induction as the smallest predicate S yn such that:

• (Base case) S yn(S0
R, S

0
F );

• (Inductive case)
S yn(sR, sF) ∧ ∧

A∈AR
∀x, s′

F.Do(δA(x), sF, s′
F) ∧∧

f /∈Obs f (x,do(A(x, s′
F), sR)) ≡ ϕf (x, s′

F) ⊃ S yn(do(A(x, s′
F), sR), s′

F).

Intuitively, this definition says that S0
R and S0

F are synchronized, and that if sR and sF are synchronized and we do action 
A(x) in sR and, correspondingly, we execute δA(x) in sF , then the resulting situations do(A(x, s′

F), sR) and s′
F are synchronized, 

as long as the successor-state axioms for non-observation fluents are satisfied. We are indeed interested in those situations 
sR ∈ SR such that there exists a sF such that S yn(sR, sF), i.e., {sR ∈ SR | ∃sF.S yn(sR, sF)}.

5.6. Facility

Given the cloud information model, a facility information model, a facility process and a set of mappings that are repre-
sented, respectively, as BAT− DR , a BAT DF , a ConGolog program δ0

F and mappings Maps, a facility is formalized by the tuple 
Fac = 〈DR, DF, δ0

F , Maps〉. We denote by ACFac the set of active object constants of Fac, that is either in DR or in DF , i.e., 
ACFac = ACDR ∪ ACDF .

5.7. Recipes

A recipe specifies the possible way(s) in which a product can be manufactured and is captured by a ConGolog program 
δ0

R for the action theory DR , i.e., the cloud information model. As such, δ0
R can mention only constants from ACDR . This is 

compliant with the MaaS paradigm, where recipes are resource independent [39], i.e., specified using actions AR and fluents 
FR common throughout the manufacturing cloud rather than by adopting the action theory of a specific facility.

Example 4 (Recipe). A simple example of a process recipe is given below. This recipe makes use of the observa-
tion precision already discussed and the actions load(part, weight,material,dimx,dimy,dimz), drill(part,dmtr, speed, x, y, z), 
apply_glue(part, glue_type), rivet(part, x, y, z), place(part1, part2, part, x, y, z), reaming(part,dmtr, x, y, z) and store(part, code), all 
in AR . As expected, these are not the same actions available in the facility (although the names and arguments are similar, 
for simplicity). We have commented in Example 3 on the mapping for drill.

According to this recipe, two steel parts denoted by b and f are loaded, a hole is drilled in f, then glue is applied to b. 
This is then placed on f, resulting in a composite part fb. The loading of b and the drilling of f can occur in any order, but 
glue must be applied to f before b is placed. If the resource used for drilling is not high-precision (which is an observation 
– see Example 3), a reaming operation is performed on the hole. Finally a rivet is applied to the hole and fb is stored away, 
with a ok code.

load(f,4,steel,810,756,29) ;
(load(b,2,steel,312,23,20) ‖ drill(f,.3,200,123,89,21)) ;
apply_glue(b,str_adh) ; place(b,f,fb,7,201,29) ;
if ¬precision(hole(f,123,89,21),high) do

reaming(fb,.3,123,89,21)

rivet(fb,123,89,21) ; store(fb,ok) �
A recipe does not specify how the manufacturing operations should be executed because it is resource-independent. The 

specific implementation of these actions on a facility needs to be automatically synthesized.

6. Realizability

In this section we formally characterize the conditions under which we can say that a recipe is realizable by a facility. 
Intuitively, this requires that each abstract action executable by the recipe can be mapped to a (sequence of) executable 
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compound actions of the facility. In other words, no matter how the recipe may be progressed, the facility always has a way 
of replicating it. Moreover, whenever the recipe may be completed, the facility is in a final (i.e., safe) state.

We denote by 〈δ, s〉 the configuration of an arbitrary program δ in situation s. We use 〈δF, sF〉 to denote the current 
program δF and situation sF ∈ SF to which the facility process δ0

F evolved from situation S0
F . Similarly we use 〈δR, sR〉 to 

denote the current program δR and situation sR ∈ SR to which the recipe δ0
R evolved from situation S0

R . Observe that SR is 
the set of situations of DMaps

R , not of DR; indeed we need to use the theory DMaps
R to evolve situations of the facility, so as 

to take into account the evolution of fluents f ∈ Obs. Initially, these configurations are 〈δ0
F , S0

F 〉 and 〈δ0
R, S0

R〉.
We are ready to formally capture what it means for a facility to always be able to replicate the actions of a recipe, i.e., 

when the recipe can be realized by the facility. Formally, a recipe δR in situation sR can be realized by a facility δF in sF if:

r0 for every non-observation fluent f /∈ Obs in DR the value in situation sR of 〈δR, sR〉 is compatible through the mapping 
f (x) ↔ ϕf (x) with the value of ϕf (x) in situation sF of 〈δF, sF〉; note that for f ∈ Obs this is already guaranteed by the 
definition of DMaps

R ;
r1 Final(δR, sR) implies Final(δF, sF): if the recipe can be legally terminated, then all the resources can (safely) terminate 

their execution; and
r2 for every possible executable abstract action A(x) from 〈δR, sR〉 in the recipe, there exists a (arbitrarily complex) program 

δA(x), determined through the mapping A(x) ↔ δA(x), that is executable from 〈δF, sF〉 to some 〈δ′
F, s

′
F〉 and which repre-

sents the implementation of the action A(x) in the facility. Crucially, for at least one such 〈δ′
F, s

′
F〉, 〈δ′

R, do(A(x, s′
F), sR)〉 is 

realized by 〈δ′
F, s

′
F〉.

Note that in r2, the recipe situation do(A(x, s′
F), sR), resulting from the execution of the abstract action A(x) in situation 

sR , depends on the situation s′
F reached by the facility after the execution of δA(x). This captures the synchronization of the 

recipe and the facility situations.
Formally, we define the notion of realizability by co-induction as the largest predicate R between recipe and facility 

configurations such that:

〈δR, sR〉R〈δF, sF〉 ⊃
r0

∧
f /∈Obs ∀x.f (x, sR) ≡ ϕf (x, sF) ∧

r1 Final(δR, sR) ⊃ Final(δF, sF) ∧
r2

∧
A∈AR

∀δ′
R, x. Trans(δR, sR, δ′

R, do(A(x, S0
F ), sR)) ⊃

∃δ′
F, s

′
F. Trans∗(δF, sF, δ′

F, s
′
F) ∧ Do(δA(x), sF, s′

F) ∧ 〈δ′
R, do(A(x, s′

F), sR)〉R〈δ′
F, s

′
F〉

where A(x) ↔ δA(x) and f (x) ↔ ϕf (x) are the mappings in Maps. A relation R satisfying the conditions above is called 
realizability relation. We say that a facility configuration 〈δF, sF〉 realizes a recipe configuration 〈δR, sR〉, written 〈δR, sR〉 �
〈δF, sF〉, if there exists a realizability relation R such that 〈δR, sR〉R〈δF, sF〉. It is easy to see that � is itself a realizability 
relation and, in fact, the largest one.

We observe that this definition bears some similarities with the definition of simulation in [40], however it takes into 
account that the value of some fluents in the cloud information model come from the facility and that these values are not 
controllable by the recipe itself.

To understand the above formula, observe that from the precondition axioms in DMaps
R , which ignore the facility sit-

uation arguments, we have that if Poss(A(x, s′
F), sR) for some s′

F then Poss(A(x, s′′
F ), sR) for all s′′

F . Now considering that 
Trans(A(x, s′

F), sR, δ′, s′
R) ≡ s′

R = do(A(x, s′
F), sR) ∧ Poss(A(x, s′

F), sR) ∧ δ′ = ε we can suppress the situation argument from 
A(x, s′

F) in programs δR and use simply A(x) as action term in Trans, by defining:

Trans(A(x), sR, δ
′, s′

R) ≡ ∃s′
F ∈ SF.s′

R = do(A(x, s′
F), sR) ∧ Poss(A(x)[s′

F], sR) ∧ δ′ = ε

Moreover if for some s′
F we have Trans(δR, sR, δ′

R, do(A(x, s′
F), sR)) then for every s′′

F we have Trans(δR, sR, δ′
R, do(A(x, s′′

F ), sR)).

Based on these considerations, in DMaps
R we are allowed to use any situation term of DF (in particular, the situation 

constant S0
F ) as a placeholder for the situation of DF , since such situation term does not affect the executability of A(x) at 

sR nor the program δ′
R resulting after its execution.

Definition 1 (Realizability). We say that a recipe δ0
R is realizable by a facility Fac = 〈DR, DF, δ0

F , Maps〉 iff 〈δ0
R, S0

R〉 � 〈δ0
F , S0

F 〉. �

When δ0
R is realized by δ0

F then, at every step, given a ground abstract action A(x) selected by δ0
R , an execution of the 

corresponding program δA(x) exists that preserves the realizability relation �, and at the end of which control is returned 
to the recipe for the selection of the next action. Notice that δA(x) is nondeterministic in general, as ConGolog programs 
may include choices of arguments and nondeterministic branching. Nonetheless, the existence of the realizability relation 
guarantees that this is possible (similarly to [40], we assume that nondeterminism in δ0 is “angelic”).
F
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Note that once we have that 〈δ0
R, S0

R〉 � 〈δ0
F , S0

F 〉 we can evolve (in all possible ways) the two configurations 〈δ0
R , S0

R〉 and 
〈δ0

F , S0
F 〉 in a synchronized way so as to maintain them in the relation �. Formally, we can define by induction the smallest

predicate S ynC , such that:

• (Base case) S ynC(δ0
R, S0

R, δ0
F , S0

F );

• (Inductive case)
S ynC(δR, sR, δF, sF) ∧ Trans(δR, sR, δ

′
R, s′

R) ∧ s′
R = do(A(x, s′

F), sR) ∧
Trans∗(δF, sF, δ

′
F, s′

F) ∧ 〈δ′
R, s′

R〉 � 〈δ′
F, s′

F〉 ⊃ S ynC(δ′
R, s′

R, δ
′
F, s′

F).

This predicate S ynC can be seen as a refinement of the predicate S yn introduced above, in the precise sense given by 
the next proposition.

Proposition 1 (Synchronization). Let Fac = 〈DR, DF, δ0
F , Maps〉 be a facility and δ0

R a recipe realized by the facility, i.e., such that 
〈δ0

R, S0
R〉 � 〈δ0

F , S0
F 〉. Then for all pairs of configurations 〈〈δR, sR〉, 〈δF, sF〉〉 we have that S ynC(δR, sR, δF, sF) ⊃ S yn(sR, sF).

Proof. By induction, immediate by the definitions. �
This proposition guarantees that in the execution of recipe δ0

R (from S0
R), as long as we follow the relation �, we only 

generate values for the fluents in f ∈ Obs that come from corresponding concrete executions in the facility.
We define a controller as follows. Given the current configuration 〈δR, sR〉 of the recipe, the current facility configuration 

〈δF, sF〉, and a new configuration 〈δ′
R, s′

R〉 specifying the next recipe configuration that may result from the one-step execu-
tion of δR through some action A(x), a controller returns a sequence of configurations 〈δ0

F , s0
F 〉 . . . 〈δm

F , sm
F 〉 of length m ≥ 0

representing the steps that the facility must execute in order to complete δA(x). We require that the recipe and facility 
configurations are in the realizability relation before and after executing A(x) and δA(x).

Definition 2 (Controller). Given a facility Fac = 〈DR, DF, δ0
F , Maps〉 and a recipe δ0

R realizable by Fac, a controller for δ0
F that 

realizes δ0
R is a function ρ that, given two configurations 〈δR, sR〉 and 〈δF, sF〉 such that 〈δR, sR〉 � 〈δF, sF〉, an action A(x), 

and a program δ′
R such that Trans(δR, sR, δ′

R, do(A(x, S0
F ), sR)) (recall that S0

F is used as a placeholder, and does not affect δ′
R), 

returns a sequence of facility configurations 〈δ0
F , s0

F 〉 . . . 〈δm
F , sm

F 〉, such that:

• Trans(δi
F, s

i
F, δ

i+1
F , si+1

F ) for i ∈ [0, m−1], and δ0
F = δF and s0

F = sF , that is, the sequence is executable in the facility;
• Do(δA(x), sF, sm

F ), that is, the situation sm
F is the result of executing the concrete program δA(x) corresponding to A(x)

from sF;
• 〈δ′

R, do(A(x, sm
F ), sR)〉 � 〈δm

F , sm
F 〉, that is, realizability between the resulting programs is preserved. �

In other words a controller is a function that, given a recipe and a facility configuration such that 〈δR, sR〉 � 〈δF, δF〉, an 
action A(x) and the remaining program δ′

R after action execution, returns the witnesses for the realizability, i.e., a sequence 
of steps to progress to next recipe and facility configurations in such a way that 〈δ′

R, do(A(x, sm
F ), sR)〉 � 〈δm

F , sm
F 〉. As a result, 

given the initial recipe and facility configurations 〈δ0
R, S0

R〉 and 〈δ0
F , S0

F 〉, for every possible evolution of 〈δ0
R, S0

R〉 as determined 
by the choice of actions A(x) at each point, a controller ρ produces a corresponding evolution of 〈δ0

F , S0
F 〉 that fulfills the 

realizability requirements, and hence determines the sequence of concrete configurations that the facility must traverse in 
order to realize the recipe. Finally, observe that any evolution determined by any controller ρ defined as above is such that 
S ynC (and hence S yn) holds.

7. Controller synthesis

To check whether a realizability relation exists and, if so, build a controller, we resort to model checking for a variant 
of the (modal) μ-calculus in [41,35], which we call μLc , interpreted over game arenas (GA), which are special (labeled) 
transition systems (TSs) capturing the rules of a turn-based game between two players, Environment and Controller.

A (first-order) vocabulary is a pair σ = 〈F, AC〉, where F and AC are sets of, respectively, fluents and active (object) 
constants. Given an interpretation domain � with standard names, such that AC ⊆ �, we denote by Iσ

� the set of all 
possible interpretations of F and AC over � that interpret all constants from AC as themselves.

Definition 3 (Game arena). Given a vocabulary σ = 〈F, AC〉, let:

• turnCtrl and turnEnv be special 0-ary fluents (i.e., propositions) not in F;
• FT =F ∪ {turnCtrl, turnEnv};
• σT = 〈FT , AC〉.
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A game arena over σ is a tuple T = 〈�T , Q , q0, →, I〉, where:

• �T is the GA object domain, with standard names, such that AC ⊆ �T ;
• Q is the set of GA states;
• q0 ∈ Q is the GA initial state;
• →⊆ Q × Q is the GA transition relation;
• I : Q �→ IσT

�T
is a labeling function associating each state q ∈ Q with an interpretation I(q) = 〈�T , ·I(q)〉 ∈ IσT

�T
, such 

that exactly one among turnCtrl and turnEnv is true (and all constants in AC are interpreted as themselves). �

We observe that the definition of game arena is consistent with the definition of labeled transition system in [35], thus 
all related results in [35] are applicable here (provided the respective hypotheses hold).

Given a facility Fac = 〈DR, DF, δ0
F , Maps〉 and a recipe δ0

R , we next define the GA T induced by Fac and δ0
R . This GA 

essentially captures those asynchronous executions of δ0
F over DF and δ0

R over DMaps
R such that the fluents of DMaps

R are 
correctly synchronized with those of DF , as per the mappings (over fluents, not actions) in Maps.

In defining T , it will be convenient to use a different, yet equivalent, representation of programs, to separate the as-
signments of “pick variables” to domain objects (resulting from the nondeterministic choice of arguments), i.e., the data, 
from the control flow, i.e., the program counter [42]. This will simplify proving our results. The new representation, which 
we call split representation, has the advantage of making explicit the structure of programs and, in particular, of isolating the 
data as the only source of infiniteness of a program’s closure. Indeed, since the ConGolog programs we consider here are not 
recursive, they yield, when executed, only finitely many program counters; on the other hand, for the finitely many pro-
gram variables, there exist, in general, infinitely many possible assignments to distinct domain objects. Since programs are 
obtained by combining program counters with assignments, they are infinitely many only as a consequence of the infinite 
number of possible assignments to pick variables.

We represent a program δ0 as the pair 〈δ, x〉, where δ denotes its current program counter (defined below) and x =
〈x1, . . . , xk〉 is a tuple of object terms such that each xi is the domain object currently assigned to the i-th pick variable 
of δ0 (we assume an ordering of simple actions and parameters). We call x the (current) environment. Note that the new 
representation is merely a syntactic variant: as shown in [42], we can reconstruct the original program δ0 by replacing the 
free pick variables of δ by the object terms assigned to the variables x. This is denoted by writing δ[x]. Indeed, while the set 
of possible environments remains infinite along a computation, at each state the environment term, consisting of a single 
tuple of arity k, maintains only a bounded number of values (smaller than the size of the programs).

The set of possible program counters for a program is formalized as the program’s syntactic closure, defined by extending 
the definition in [42] to the new operator |||.

Definition 4 (Syntactic closure of a program). The syntactic closure of a program δ0 is the set 
δ0 inductively defined as follows:

1. δ0, ε ∈ 
δ0 ;
2. if δ1; δ2 ∈ 
δ0 and δ′

1 ∈ 
δ1
then δ′

1; δ2 ∈ 
δ0 and 
δ2
⊆ 
δ0 ;

3. if δ1 | δ2 ∈ 
δ0 then 
δ1
, 
δ2

⊆ 
δ0 ;
4. if π z.δ ∈ 
δ0 then 
δ ⊆ 
δ0 ;
5. if δ∗ ∈ 
δ0 then δ; δ∗ ∈ 
δ0 ;
6. if δ1‖δ2 ∈ 
δ0 and δ′

1 ∈ 
δ1
and δ′

2 ∈ 
δ2
then δ′

1‖δ′
2 ∈ 
δ0 ;

7. if δ1|||δ2 ∈ 
δ0 and δ′
1 ∈ 
δ1

and δ′
2 ∈ 
δ2

then δ′
1|||δ′

2 ∈ 
δ0 . �

Observe that since the environment is separated from the program counter, the syntactic closure 
δ0 of a program δ0 is 
always a finite set. We stress that the split representation is just a syntactic variant of program representation, equivalent 
to the standard one, so we can freely switch between them without affecting the results.

The GA is a turn-based game between two players, called Controller (Ctrl) and Environment (Env, not to be confused 
with the variable environment used above for programs), who take care of progressing, respectively, the recipe and the 
factory. Turns are not strictly alternating. The components of the GA T = 〈�T , Q , q0, →, I〉 induced by Fac and δ0

R are 
detailed below.

Vocabulary For the vocabulary σ = 〈F, AC〉, we define:

• F = FR ∪ FF ∪ {pcR, envR, Act, xAct, pcF, envF, pcA, envA, finalEnv, finalCtrl,finalA}, where fluents in FR and FF have the 
situation argument suppressed, while the remaining fluents are added for book-keeping (their role will be become clear 
when we consider the labeling function for states). Specifically, pcR, Act, pcF , and pcA are unary; the arity of envF and 
envR matches the number of pick variables in δ0

F and δ0
R , respectively, the arity of xAct is the maximum number Nv of 

variables x among all actions A ∈ AR , and the arity of envA is Nv + Np , with Np the maximum number of pick variables 
among all programs δA(x) ∈ P , with P the set of programs δA(x) such that A(x) ↔ δA(x) ∈ Maps, for some A; finalEnv, 
finalCtrl, and finalA are propositions;
17
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• AC = ACDF ∪ ACDR ∪AR ∪ 
δ0
R
∪ 
δ0

F
∪ (

⋃
δ∈P 
δ), for P as above.

Observe that actions from DR and program counters act as active constants (as well as objects). We require that pcR, Act, 
pcF , and pcA are sorted predicates that can take only objects from, respectively, 
δ0

R
, AR , 
δ0

F
, and 

⋃
δ∈P 
δ , which, thus, act 

as sorts. No other predicate can take objects from these sorts.

Object domain The GA object domain is �T = � ∪ 
δ0
R
∪AR ∪ 
δ0

F
∪ (

⋃
δ∈P 
δ). Recall that �T has standard names, thus, 

in particular, program counters and actions act as both (active) constants and objects.

Set of states Let Cδ,s be the set of configurations to which an arbitrary program δ can evolve, starting from situation s. We 
let Cδ0

R
= Cδ0

R ,S0
R
, Cδ0

F
= Cδ0

F ,S0
F
, and CP = ⋃

δ∈P ,sF∈SF
Cδ,sF , for P as above (recall that these sets are defined over situations of 

DMaps
R ). Notice that programs in configurations are actual programs, with actual parameters assigned to variables, i.e., they 

are not split into program counter and variable environment; consequently, the configuration spaces defined above are, in 
general, infinite. The set of states Q ⊆ {Env, Ctrl} × Cδ0

R
× Cδ0

F
× (

⋃
δ∈P ,s∈SF

CDF,δ,s) is defined by mutual induction with the 
transition relation → (see transition relation below). Each state q = 〈ϑ, 〈δR, sR〉, 〈δF, sF〉, 〈δ, s〉〉 is such that s = sF . For nota-
tional convenience, we omit s and avoid tuple nesting, using the following equivalent representation: q = 〈ϑ, δR, sR, δF, sF, δ〉. 
Each state captures a configuration of the GA, where: ϑ represents which player is next to move; 〈δR, sR〉 stands for the cur-
rent recipe configuration; 〈δF, sF〉 is the current facility configuration; and 〈δ, s〉 is the current configuration of the program 
δA(x) ∈ P associated by Maps with the (most recent) action A executed by δR . The definition of the transition relation spec-
ifies how these components evolve as the game proceeds. Notice that Q is in general infinite, as so are the configuration 
spaces over which it is defined.

Initial state For the initial state, we let q0 = 〈Env, δ0
R, S0

R, δ
0
F , S0

F , ε〉. This captures the situation where: Environment is to 
move next; the recipe has not started yet (thus no action was executed); the factory program has not started yet; and no 
program from P has been selected (as no action has been executed).

Transition relation The transition relation → ⊆ Q × Q is defined by mutual induction with the set of states Q , as follows:

• q0 ∈ Q ;
• for q = 〈ϑ, δR, sR, δF, sF, δ〉 and q′ = 〈ϑ ′, δ′

R, s
′
R, δ

′
F, s

′
F, δ

′〉, if
– ϑ = Env ∧ Trans(δR, sR, δ′

R, s′
R) ∧ ∃A, x. s′

R = do(A(x, S0
F ), sR) ∧ δ′ = δA(x) ∧ δ′

F = δF ∧ s′
F = sF ∧ ϑ ′ = Ctrl, or

– ϑ = Ctrl ∧ δ′
R = δR ∧ ∃A, x, s′′

F , s′′
R. sR = do(A(x, s′′

F ), s′′
R) ∧ s′

R = do(A(x, s′
F), s

′′
R) ∧

Trans(δF, sF, δ′
F, s

′
F) ∧ Trans(δ, sF, δ′, s′

F) ∧ (ϑ ′ = Env → Final(δ′, s′
F)),

then q′ ∈ Q and q → q′ .

Transitions differ based on which player moves. Environment selects an action A(x), together with the corresponding 
program δA(x), from those made available by the recipe δR (initially δ0

R ) in the current configuration; Environment then 
advances the recipe configuration and the cloud situation sR of DMaps

R , consistently with the chosen action, and finally 
passes the turn to Controller. Notice that sR is advanced according to the initial facility situation, i.e., s′

R = do(A(x, S0
F ), sR). 

Recall that DF ’s situation argument of A does not affect the interpretation of DR ’s non-observation fluents.
Controller chooses one among the actions that are currently legal for both δF (initially δ0

F ) and δ in their current con-
figuration. Observe that δ is assigned to δA(x) by Environment at its turn. After selecting the action, Controller advances 
δ, δF , and sF , consistently with the chosen action. This step corresponds to one execution step of δ, i.e., one step of the 
implementation of action A(x, ·) previously selected by Environment, which is actually realized by the factory. In addition,
Controller aligns the current cloud situation sR with the resulting factory situation s′

F (recall that the interpretation of DR ’s 
non-observation fluents is not affected by the DF ’s situation argument in A). The situation s′′

R where Environment chose the 
action A(x, ·) currently under execution is retrieved, and the cloud situation is assigned to s′

R = do(A(x, s′
F), s

′′
R). Notice that 

s′
R is the situation resulting from the execution of A(x) at s′′

R , given the factory situation s′
F . Controller can (but does not 

have to) return the turn to Environment only when δ has reached a final configuration.

Labeling function Let q = 〈ϑ, δR, sR, δF, sF, δ〉 ∈ Q be a generic state of T :

• for every f ∈FF , fI(q)(x) iff DMaps
R |= f (x, sF);

• for every f ∈ Obs, fI(q)(x) iff DMaps
R |= ϕf (x, sF);

• for every f ∈FR \ Obs, fI(q)(x) iff DMaps
R |= f (x, sR);

• pcRI(q) = δ̃R , envRI(q) = {x̃}, where 〈δ̃R, x〉 is the split representation of δR into program counter and environment: x̃ is 
as x, possibly extended with trailing null values to match the arity of envR. For notational convenience we omit the ˜
symbol in the following, implicitly assuming that x is suitably extended when needed; notice that both pcR and envR
are interpreted as singletons;
18
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• for pcF and envF , and for pcA and envA, we proceed as above but considering, respectively, δF and δ; the resulting 
interpretations are, again, singletons;

• ActI(q) = {A} and xActI(q) = {x} if ∃s′
R, s

′
F.sR = do(A(x, s′

F), s
′
R), and ActI(q) = ∅, xActI(q) = ∅ otherwise;

• finally, we have that finalEnv ≡ Final(δR, sR), finalCtrl ≡ Final(δF, sF), and finalA ≡ Final(δ, sF).

The labeling function provides the interpretation of the fluents in F , plus additional information about game turn, recipe 
action under execution, and configuration of the involved programs, associated with the current state of the game. This 
information is used to interpret μLc formulas on T (labelings retain all the relevant information).

Observe that T captures the moves available to Environment and Controller, but not the goal of the game. Such moves 
essentially correspond to: (i) execution steps (action executions) of the recipe process δ0

R for Environment; (ii) execution steps 
of the factory process δ0

F for Controller. Environment moves first, and when Controller returns the turn to Environment, a 
complete execution of the program associated with the last action selected by Environment has been correctly completed.

7.1. Controller synthesis from GAs

μLc model checking can be used both to compute a realizability relation between the recipe and the facility, and to 
synthesize the corresponding controller. Formulas of μLc have the following syntax:


 := φ | ¬
 | 
1 ∧ 
2 | 〈−〉
 | Z | μZ .
 | ν Z .
,

where: φ is a FO sentence with predicates and (active) constants from a given vocabulary σ = 〈F, AC〉; the modal operator 
〈−〉
 denotes the existence of a transition from the current state to a state where 
 holds; we use the abbreviation [−]

for ¬〈−〉¬
; Z is a second-order (SO) predicate variable over sets of states, and μZ .
 and ν Z .
 denote the least and 
greatest fixpoints, respectively, with 
 seen as a predicate transformer with respect to Z . By the semantics below, one can 
see that the only interesting formulas are those closed w.r.t. to SO (in addition to FO) variables. In fact, SO variables are 
needed only for technical reasons, to make the fixpoint constructs available.

Note that μLc is a (strict) sub-language of the language μLp defined in [35]. Specifically, μLc disallows quantification 
across-states, i.e., the possibility of relating objects occurring in different states. As a consequence, all the results obtained 
for μLp are directly applicable to μLc .

Given a GA T = 〈�T , Q , q0, →, I〉 over a vocabulary σ = 〈F, AC〉, μLc formulas over T are defined over the vocabulary 
σT (which, by Definition 3, is obtained from σ by extending F with turnCtrl and turnEnv). The semantics of a μLc formula 

 over T is inductively defined as follows, where v is an assignment from SO variables to sets of states:

(φ)T = {q | q ∈ Q and I(q) |= φ}
(¬
)Tv = Q \ (
)Tv
(
1 ∧ 
2)

T
v = (
1)

T
v ∩ (
2)

T
v

(〈−〉
)Tv = {q | ∃q′,q → q′,q′ ∈ (
)Tv }
(Z)Tv = v(Z)

(μZ .
)Tv = ⋂{E ⊆ Q | (
)Tv[Z/E] ⊆ E}
(ν Z .
)Tv = ⋃{E ⊆ Q | E ⊆ (
)Tv[Z/E]}

A state q ∈ Q is said to satisfy a μLc formula 
 (under a SO assignment v), if q ∈ (
)Tv . We say that T satisfies 
 if 
q0 ∈ (
)Tv . Observe that when 
 is closed w.r.t. SO variables, as are formulas of practical interest, v becomes irrelevant. 
When not needed, we omit v from (·)Tv , thus using (·)T .

As we will show below, the satisfaction of the following μLc formula by T implies the existence of a realizability 
relation between δ0

R and δ0
F :


Real = ν X .μY .((φok ∧ [−]X) ∨ (turnCtrl ∧ 〈−〉Y )),

where φok = ∧
f∈FR\Obs ∀x.f (x) ≡ ϕf (x) ∧ turnEnv ∧ (finalEnv ⊃ finalCtrl), with ϕf (x) being the situation-suppressed version 

of ϕf (x, sF). Notice that fluents in the labeling preserve the same names as in DF and DR , thus the situation-suppressed 
version of ϕf is defined over T ’s vocabulary σ . Intuitively, φok holds in those states q of T where: (i) the interpretation 
of every fluent f ∈ FR \ Obs in the labeling of q matches the interpretation of the corresponding formula ϕf over the same 
labeling; (ii) it is Environment’s turn; and (iii) if the recipe may terminate so can the facility. The formula 
Real is true in 
all those states from which Controller can force the game to visit infinitely many times a state where φok holds, no matter 
how Environment moves in its turns. 
Real also requires that Controller does not pass the turn until φok holds. The set 
Win(
Real) of winning states is the set of states where 
Real holds.

Theorem 1. Given a facility Fac = 〈DR, DF, δ0, Maps〉, a recipe δ0 over DR is realizable by the facility process δ0 iff q0 ∈ Win(
Real).
F R F
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Proof. For the If-part, assume that q0 = 〈Env, δ0
R, S0

R, δ
0
F , S0

F , ε〉 ∈ Win(
Real). We prove that there exists a realizability relation 
R such that 〈δ0

R, S0
R〉R〈δ0

F , S0
F 〉. Since q0 ∈ Win(
Real), for each possible Environment move q0 → q1, Controller has a sequence 

of (legal) moves that take the GA T from q1 to a state q such that q |= φok , and from which, for all possible Environment

moves, Controller has a sequence of moves that take T to a state q′ such that q′ |= φok , and so on forever. In other 
words, whenever Environment moves, Controller can force the game to achieve a state where φok holds. Notice that φok

implies that Environment is to move. By considering all possible Environment moves at each such state and, for each of 
them, a suitable Controller response sequence, we obtain a tree whose root is q0, and where branches occur only at states 
where φok holds, each corresponding to a possible Environment move. These infinite paths q0q1 · · · correspond to plays of 
T and contain infinitely many states q = 〈Env, δR, sR, δF, sF, δ〉 such that q |= φok . For each path and each such state, we let 
〈δR, sR〉R〈δF, sF〉. Obviously, 〈δ0

R, S0
R〉R〈δ0

F , S0
F 〉.

To see that R is a realizability relation, consider an arbitrary pair of configurations from R , 〈δR, sR〉 and 〈δF, sF〉. By the 
definition of R , there exists a path q0 · · ·qi · · · containing a state qi = 〈Env, δi

R, s
i
R, δ

i
F, s

i
F, δ

i〉, such that qi |= φok , and δi
R = δR , 

si
R = sR , δi

F = δF , si
F = sF .

It is easy to see that the definition of R above satisfies requirements r0 and r1 of the realizability relation (p. 15). 
Indeed, these are consequences of the fact that qi |= φok , which, in particular, requires that the interpretation of each non-
observation fluent f of DR matches that of ϕf and that finalEnv implies finalCtrl.

For requirement r2, consider an action A(x) legal in 〈δR, sR〉. By the definition of T , and in particular the transition 
relation, Environment has a move qi → qi+1, with qi+1 = 〈Ctrl, δi+1

R , si+1
R , δi+1

F , si+1
F , δi+1〉, where: Trans(δi

R, si
R, δ

i+1
R , si+1

R ); 
si+1

R = do(A(x, S0
F ), s

i
R); δi+1

F = δi
F; si+1

F = si
F; and δi+1 = δA(x). Thus, the sequence of states q0 · · ·qiqi+1 is a path of the 

game and, since q0 ∈ Win(
Real), Controller has a sequence of moves that extends the path with states qi+2 · · ·qi+� , where 
qi+� |= φok . Let qi+ j = 〈ϑ i+ j, δi+ j

R , si+ j
R , δi+ j

F , si+ j
F , δi+ j〉 ( j = 2, . . . , �). By the definition of T , we have that: δi+ j

R = δi+1
R ; 

si+ j
R = do(A(x, si+ j

F ), si
R); Trans(δi+ j−1

F , si+ j−1
F , δi+ j

F , si+ j
F ); and Trans(δi+ j−1, si+ j−1

F , δi+ j, si+ j
F ). Moreover, for j = 2, . . . , � − 1, 

ϑ i+ j = Ctrl, and ϑ i+� = Env. Thus, since the transition relation of T implies that ϑ i+� = Env only if Final(δi+�, si+�
F ), we 

have that Final(δi+�, si+�
F ). By the above, it follows that: (i) Trans(δR, sR, δi+1

R , do(A(x, S0
F ), sR)); (ii) Trans∗(δF, sF, δi+�

F , si+�
F ); 

(iii) Do(δA(x), sF, si+�
F ); and (iv) 〈δi+�

R , si+�
R 〉R〈δi+�

F , si+�
F 〉, since qi+� |= φok and by the definition of R . Since A(x) is generic, 

requirement r2 easily follows.
For the OnlyIf-part assume a realizability relation R such that 〈δ0

R, S0
R〉R〈δ0

F , S0
F 〉. Let q0 = 〈Env, δ0

R, S0
R, δ

0
F , S0

F , δ
0〉, with δ0 =

ε , and consider a legal action A(x) from 〈δ0
R, S0

R〉, together with the mapped program δA(x). Such an action defines an En-

vironment move q0 → q1 in T , with q1 = 〈Ctrl, δ1
R, s1

R, δ
1
F , s1

F , δ
1〉, such that: (i) Trans(δ0

R, S0
R, δ1

R, s1
R); (ii) s1

R = do(A(x, S0
F ), S

0
R); 

(iii) δ1
F = δ0

F ; (iv) s1
F = S0

F ; and (v) δ1 = δA(x). By requirement r2 of R , for each A(x), there exists a sequence of execu-
tion steps for the factory process δF that realizes the mapped program δA(x). More formally, there exist two sequences 
〈δ1

F , s1
F 〉 · · · 〈δ�

F , s
�
F〉 and 〈δ1, s1

F 〉 · · · 〈δ�, s�
F〉 such that: (i) Trans(δi

F, s
i
F, δ

i+1
F , si+1

F ) (i = 1, . . . , � − 1); (ii) Trans(δi, si
F, δ

i+1, si+1
F )

(i = 1, . . . , � − 1); and (iii) 〈δ1
R, do(A(x, s�

F), S
0
R)〉R〈δ�

F , s
�
F〉. Using such sequences, we can extend q0q1 to a sequence q0q1 · · ·q�

such that: (i) for i = 2, . . . , � − 1, qi = 〈Ctrl, δ1
R, do(A(x, si

F), S
0
R), δi

F, s
i
F, δ

i〉; and (ii) q� = 〈Env, δ1
R, do(A(x, s�

F), S
0
R), δ

�
F , s

�
F, δ

�〉. 
It is easy to check that the path so defined is indeed a path of T , as it starts in the initial state q0 and is consistent, at 
every step, with T ’s transition relation. The labeling of the states in the path can be obtained through the labeling function 
previously defined. With respect to this, by requirements r0 and r1 of R , it follows that q� |= φok .

We have thus shown that for every move Environment can make in the initial state q0, Controller has a way to force 
the game to reach a new state q� such that q� |= φok . In proving this, we have used only the assumption that, for q0 =
〈Env, δ0

R, S0
R, δ

0
F , S0

F , δ
0〉, 〈δ0

R, S0
R〉R〈δ0

F , S0
F 〉. But then, since for q� = 〈Env, δ�

R, s
�
R, δ

�
F , s

�
F, δ

�〉 we have that 〈δ�
R, s�

R〉R〈δ�
F , s

�
F〉, we 

can generalize the argument above and prove that for every Environment move q� → q�+1, another state q�+m such that 
q�+m |= φok exists that can be reached after a suitable sequence of Controller moves, and so on forever. This ultimately 
proves that q0 ∈ Win(
Real). �

Although a (possibly transfinite) fixpoint computation based on approximates provides a way to obtain Win(
Real), the 
number of approximates that we need to compute is bounded (by the size of the GA) only if T is finite. Since, in our case, 
T can be infinite, the fixpoint cannot be computed in general. Nonetheless, we show how a controller can be computed 
when the Controller player can win the game represented by T , that is, when it has a winning strategy.

Let T = 〈�T , Q , q0, →, I〉 be a GA (over a vocabulary σ ). A history of T is a sequence τ = q0 · · ·q� ∈ Q + such that, for 
i ∈ [0, � − 1], qi → qi+1. H denotes the set of histories of a GA. A Controller strategy is a function ς : H �→ Q such that if 
ς(q0 · · ·q�) = q then q� |= turnCtrl and q� → q. A history τ = q0 · · ·q� is induced by a strategy ς if, for every i ∈ [0, � − 1], 
whenever qi |= turnCtrl, qi+1 = ς(q0 · · ·qi). The strategies of interest are those, called winning, which enforce 
Real .

Definition 5 (Winning strategy). A strategy ς for player Controller is said to be winning for 
Real if, for every history τ =
q0 · · ·q� induced by ς : q� |= turnEnv implies q� |= φok; and q� |= turnCtrl implies that τ can be extended to a history 
τ ′ = q0 · · ·q� · · ·qm induced by ς s.t. qm |= φok and qi |= turnCtrl, for i = �, . . . , m − 1.
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Intuitively, a strategy for Controller is winning for 
Real if Controller has a way to play in its turns such that, no matter 
how Environment moves in its turns, the game will end up to a state qm where φok holds, and from which this property is 
preserved.

While, in general, a strategy can prescribe different sequences of moves on histories that end in a same state, when a 
winning strategy exists, then there exists one that prescribes the same sequence on such histories. This is because we are 
essentially playing a model checking game over GA for a μ-calculus objective, and as a result the set of winning states 
does not depend on the history [41]. In what follows, we therefore focus only on memoryless strategies, i.e., strategies that 
depend only on the last state of the history. For this reason, a memoryless strategy ς : H �→ Q can be represented as a 
function ςm : Q �→ Q , with ς(τ ) = ςm(last(τ )), where last(τ ) denotes τ ’s last state.

Theorem 2. A controller ρ for δ0
F that realizes δ0

R can be obtained from a (memoryless) winning strategy ς for 
Real and T .

The controller ρ can be obtained as follows. For every history τ = q0 · · ·q�−1q� induced by ς , such that q�−1 |= φok

(hence, by T ’s transition relation, q� |= turnCtrl, δ�
F = δ�−1

F , and s�
F = s�−1

F ), consider the sequence of states q�+1, . . . , qm

obtained by iteratively applying ς , starting from τ , i.e., q�+1 = ς(q0 · · ·q�), q�+2 = ς(q0 · · ·q�q�+1), and so on, until a state 
qm such that qm |= φok is obtained. Let qi = 〈ϑ i, δi

R, s
i
R, δ

i
F, s

i
F, δ

i〉 and consider the action A(x) associated with the concrete 
program δ� . We then define ρ(〈δ�−1

R , s�−1
R 〉, 〈δ�

F , s
�
F〉, A(x), δ�

R) := 〈δ�+1
F , s�+1

F 〉 · · · 〈δm
F , sm

F 〉.
It remains to establish how, and when, a memoryless winning strategy can be computed. Note that, as Q may be infinite, 

this may not be possible in general.

8. Bounded case: decidable synthesis

In this section, we analyze the case where the facility Fac = 〈DR, DF, δ0
F , Maps〉 and the recipe δ0

R induce a game arena 
that is “state-bounded”, showing that a controller that realizes δ0

R can be effectively computed.
As a preliminary step, we study the problem of computing the winning set Win(
Real) and a corresponding strategy for 

Controller on a generic GA defined over the same vocabulary σ as that of the induced GA, but with a finite set of states Q . 
This is a crucial step as we will reduce the problem of computing a controller for δ0

F that realizes δ0
R to that of computing 

Win(
Real) and a strategy for Controller on a particular finite-state GA over σ . Observe that, in general, the induced GA 
itself cannot be finite-state, even if the object domain � is finite: the transition relation essentially embeds, through DMaps

R , 
the infinitely many situations of DR and DF , thus yielding an infinite set of states.

On a finite-state GA T , it is well known that μ-calculus fixpoints can be computed by iterative approximations (e.g., 
[41]). For a formula 
 = ν X .�(X), one starts with the initial approximate X0 = Q and then iteratively computes Xi =
(
)Tv[X/Xi+1] , until the fixpoint is reached, i.e., Xn = Xn−1. This is the desired fixpoint, i.e., (
)T = Xn (the SO assignment v
is omitted as irrelevant). For formulas 
 = μX .�(X), the same procedure can be used, but starting with the approximate 
X0 = ∅. The winning set Win(
Real) can thus be obtained by applying such procedures to 
Real = ν X .μY .((φok ∧ [−]X) ∨
(turnCtrl∧〈−〉Y )). During the computation, the following approximates are produced, which are used to build the controller:

Xi = Y(i−1)n(i−1)
(initially, X0 = Q )

Yi0 = ∅
· · ·
Yij = ((φok ∧ [−]X) ∨ (turnCtrl ∧ 〈−〉Y ))Tv[X/Xi ,Y /Yi( j−1)]· · ·

Xi+1 = Yini (for ni the smallest index such that Yini = Yi(ni+1))
· · ·
Xk = Yknk (for k the smallest index such that Xk = Xk+1)

The greatest fixpoint Win(
Real) = Xk = Yknk is reached after computing a finite number k of approximates Xi , each requir-
ing, in turn, to compute a finite number ni of approximates Yij . Intuitively, Yij contains all states q ∈ Q such that either of 
these two properties holds:

1. q |= φok and no matter how Environment moves from q (remember φok implies turnEnv), a state q′ ∈ Xi is reached after 
the move (first disjunct of 
Real); or

2. q |= turnCtrl and Controller can force the game to reach, in m < j consecutive moves (and keeping the turn), a state 
q′ ∈ Q that satisfies Property 1 (second disjunct of 
Real); in general, q may belong to many approximates Ykj′ , even 
with j′ < j.

(Recall that turnCtrl and turnEnv are mutually exclusive in T , thus so are the above properties.) Notice that, since 
Win(
Real) = Xk = Yknk , every state of Win(
Real) fulfills either 1 or 2, for i = k and j = nk . In other words, for every 
state q ∈ Win(
Real), if it is Environment’s turn, no matter how Environment moves, Controller can force the game to 
reach, in a number m < nk of consecutive moves, a state q′ ∈ Win(
Real) such that φok holds and from which a new 
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state q′′ ∈ Win(
Real) where the same holds can be forced again, and so on and so forth. It is then easy to see that if 
q0 ∈ Win(
Real), Controller has a winning strategy for 
Real on T . We now discuss how one such strategy can be obtained.

Given a state q ∈ Win(
Real), we define ςm(q). By construction of Win(
Real), either 1 or 2 holds, for i = k and j = nk . 
In the former case, we leave ςm(q) undefined, as q |= turnEnv. In the latter case, instead, q |= turnCtrl, thus ςm(q) must be 
defined. Since q ∈ Win(
Real) = Yknk , Controller can force the game, in m < nk moves, to a state where 1 holds. Then, there 
must exist a transition q → q′ such that q′ ∈ Ykm (i.e., from q′ , Controller can force Property 1 in m − 1 moves). In other 
words, q′ is one step “closer” to Property 1. Thus, by defining ςm(q) = q′ for one such q′ , we guarantee progressing towards, 
and eventually achieve, Property 1.

It remains to show how the desired q′ can be selected. Indeed, from q, many possible Controller moves, i.e., successor 
states q′ of q, are available, but only some of them progress towards 1. The question is then how to select one of them. To 
address this, during the fixpoint computation, we label each state q ∈ Win(
Real) with its “distance from Property 1”, i.e., 
with the minimum number of moves Controller requires to force 1. To do this, we proceed as follows:

• when a new approximate Yi0 is initialized, all labels are removed;
• when an unlabeled state q enters an approximate Yij with j > 0, then we label q with j − 1.

Obviously, when the fixpoint is obtained, all states are left with the labeling defined during the last approximate compu-
tation. Property 1 and 2 guarantee that the so-obtained labeling corresponds to the distance of each state from Property 1. 
Thus, given q, we can define ςm(q) = q′ , for q′ any state with minimal labeling among those such that q → q′ . Thus, for a 
finite-state GA, we have a technique to actually build a winning controller strategy. This will be useful later on.

Now, we relax the state-finiteness assumption and consider an induced, infinite-state, GA T . In this case, constructing a 
controller is not possible in general. We show, however, how this can be done when the information kept in each state of 
the GA is “bounded” ([42]). Informally, a GA is state-bounded if all of its states are labeled by interpretations containing only 
a bounded number of objects (or, equivalently, a bounded number of distinct tuples). That is, in every state, the number of 
objects in the interpretation of all fluents is bounded by a given bound. We recall the corresponding formal definition below. 
Given a FO interpretation I , the active domain of I is the set adom(I) of all the objects that occur in the interpretation of 
some fluent in I .

Definition 6 (State-boundedness). A GA T = 〈�T , Q , q0, →, I〉 is said to be state-bounded by b ∈ N if |adom(I(q))| ≤ b, for 
every q ∈ Q . T is said to be state-bounded if it is state-bounded by b, for some b. �

We can show that the induced GA T is state-bounded whenever DF and DR are “bounded”, in the sense of the following 
definitions.

Following [18], for b ∈N and a fluent f , we can write a FO formula Boundedf ,b(s), to express that fluent f contains fewer 
than b distinct tuples at situation s. We then say that f is bounded by b in situation s (of a BAT D), if D |= Boundedf ,b(s).

Definition 7 (Bounded BAT [18]). Let Boundedb(s) .= ∧
f∈F Boundedf ,b(s). An action theory D is bounded if there exists b ∈N

such that:

D |= ∀s.Executable(s) ⊃ Boundedb(s).�

Intuitively, the definition requires that the number of objects contained in the interpretation of the fluents at situation s
be less than some b ∈N .

We generalize the notion of boundedness to BAT−s. In order to do this, we need to specifically handle observations, 
which are not constrained in any way in BAT−s. The actual property of interest is whether a BAT− is bounded “provided 
its observations are”. This assumption can be captured by the FO formula BoundedObs

b (s) .= ∧
f∈Obs Boundedf ,b(s), which 

expresses that, at situation s, the interpretations of all observations contain fewer than b distinct objects.

Definition 8 (Bounded BAT− modulo observations). A BAT− D is bounded modulo observations if there exist b, b′ ∈N such that:

D |= ∀s.(Executable(s) ∧ BoundedObs
b′ (s)) ⊃ Boundedb(s).�

Observe that Definition 8 generalizes 7: if D contains no observations, the former trivially reduces to the latter. For 
simplicity, when no ambiguity arises, we refer to BAT−s which are bounded modulo observations simply as “bounded”.

We can now prove state-boundedness for every GA induced by a facility that includes a bounded DF and a bounded DR .

Theorem 3. If a facility Fac = 〈DR, DF, δ0
F , Maps〉 is such that DR is bounded (modulo observations) and DF is bounded, then for any 

recipe δ0 the induced GA T is state-bounded.
R
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Proof. First observe that, by the definition of T ’s transition relation, all DR and DF situations, respectively sR and sF , 
occurring in each state q of T are executable. Thus, because DF is bounded by hypothesis, so are all of its fluents at 
every such sF . Consider a fluent f ∈ FF . By the labeling function, we have that fI(q)(x) iff DMaps

R |= f (x, sF), thus, by DF ’s 
boundedness, it follows that fI(q) contains a bounded number of distinct tuples; to express this, we simply say that fI(q)

is bounded. Similarly, for fluents f ∈ Obs, since fI(q)(x) iff DMaps
R |= ϕf (x, sF), because ϕf (x, sF) is domain-independent, DF

bounded, and sF executable, fI(q) is bounded.
For fluents f ∈FR \ Obs, by the labeling function, we have that fI(q)(x) iff DMaps

R |= f (x, sR). Boundedness of fI(q) follows 
from boundedness modulo observations of the BAT− DR and executability of sF and sR . Indeed, by state-boundedness of DF

and executability of sF , all observation fluents in DMaps
R are bounded at situation sF (regardless of sR). But then, for such sF , 

by boundedness modulo observations of DR and executability of sR , it follows that all non-observation fluents of DMaps
R are 

bounded at situations sF and sR .
Finally, it is easy to see that all other fluents in the labeling are bounded, as being either propositions or singletons. �
Infinite, state-bounded GAs are the norm when BATs are used to model manufacturing facilities. Typically, fresh parts 

arrive continuously in a facility for processing. This yields, in general, an infinite number of distinct states (if we consider 
the parts currently processed as part of the state). However, when resources have bounded capacity, a recipe operates on 
finitely many parts at a time, and requires only finitely many operations, thus the number of objects processed at any 
point in time does not exceed the capacity bound. As an example of state-bounded BAT, consider the running example of 
previous sections. Note that fluents such as part(part, s), at(part, i, s), or material(part,m, s), disappear from the extension as 
soon as the part in question is stored away, i.e., it exits the cell through an action out_cell. This reflects the fact that, once 
processed, a part is no longer involved in the process and all the corresponding information can be safely forgotten. In other 
words, the fluents carrying information about a given part eventually disappear and do not “accumulate”. Thus, since only 
a bounded number of parts are processed at a time and since the information about each of these is bounded, it follows 
that, at any situation, the corresponding interpretation contains only a bounded number of facts, i.e., a bounded number of 
objects. This implies a state-bounded induced GA.

Later, we will prove that the induced GA T is also “generic”, a notion which intuitively captures that T ’s transitions do 
not depend on the actual objects contained in the labeling of the relevant states (apart from finitely many active constants) 
but only on the mutual relationships among objects. This notion is formally stated as follows.

Given two FO interpretations I, I ′ ∈ IF,K
� , an isomorphism h between I and I ′ is a function h : � �→ � so that (i) for 

every fluent f ∈F , h(y) ∈ fI if and only if y ∈ fI
′

and (ii) for every active constant k ∈K, kI = h(kI
′
) = k. We say that I and 

I ′ are isomorphic (under h), written I ∼h I ′ , if there exists an isomorphism h between I and I ′ . Intuitively, I and I ′ are 
isomorphic if they are the same interpretation modulo an object renaming that preserves the identity of active constants.

Definition 9 (Genericity). A GA T = 〈�T , Q , q0, →, I〉 is said to be generic if: for every q1, q′
1, q2 ∈ Q and every function 

h : �T �→ �T such that I(q1) ∼h I(q2), if q1 → q′
1, then there exists q′

2 ∈ Q such that q2 → q′
2 and I(q′

1) ∼h I(q′
2).

Intuitively, this says that a GA T is generic if, whenever two states are isomorphic under h, they yield the same transi-
tions modulo the same object renaming prescribed by h. Differently put, a GA is generic if states that are identical modulo 
object renaming are involved in exactly the same transitions (still modulo object renaming).

We thus have that T is generic (proven later), and that if DR and DF are bounded, then T is state-bounded. This allows 
the application of the results in [42,35] which, in turn, allow us to prove the following central result:

Theorem 4. Given a facility Fac = 〈DR, DF, δ0
F , Maps〉 such that DR and DF are bounded, and a recipe δ0

R that is realizable by Fac, 
there exists a controller for δ0

F that realizes δ0
R and is effectively computable.

In the next two sections we prove this theorem and show how to actually build and execute a controller.

9. Verifying realizability for the bounded case

In [35] (see Theorems 5 and 6 therein), the problem of checking whether a Transition System that is state-bounded and 
generic satisfies a formula 
 was proven decidable for 
 belonging to μLp . In the context of this paper, a corresponding 
result can be formally stated as follows (recall that μLc is a sub-language of μLp ):

Theorem 5. Given a generic, state-bounded GA T , there exists a finite-state GA T̄ s.t., for every μLc formula 
, T |= 
 iff T̄ |= 
.

When it exists, we call such a T̄ a faithful abstraction of T . The theorem says that if state-boundedness and genericity 
hold for T then one can check whether it satisfies 
 by simply checking whether (one of) its faithful abstraction(s) T̄
satisfies it.
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In this section we prove Theorem 4. To this end, we first prove in Section 9.1 that the induced GA T is generic. This, 
together with Theorem 3, enables the application of Theorem 5 to T (under the assumption that DF is bounded), which, in 
turn, implies the existence of a faithful abstraction T̄ . Then, in Section 9.2 we prove that:

Theorem 6. There exists a strategy ς on T for player Controller iff a winning strategy ς̄ exists on a faithful abstraction T̄ of T .

Finally, in Section 10 we show how a controller for T can be extracted from ς̄ . Together, these results guarantee that (i)
there exists a finite GA T̄ that is a faithful abstraction of T and that (ii) a controller for T can be effectively extracted from 
T̄ . From these, Theorem 4 follows (as the results hold also for memoryless strategies).

9.1. Faithful abstraction

We start by proving the following result.

Lemma 1. The GA T induced by a facility Fac = 〈DR, DF, δ0
F , Maps〉 and a recipe δ0

R is generic.

Proof. Consider three states q1, q′
1, q2 ∈ Q of T such that q1 → q′

1 and I(q1) ∼h I(q2), for some isomorphism h : �T �→
�T . Let qi = 〈ϑ i, δi

R, s
i
R, δ

i
F, s

i
F, δ

i〉 (possibly primed). Since I(q1) ∼h I(q2), the interpretations of pcR at q1 and q2 match, i.e., 
pcRI(q1) = pcRI(q2) (recall that program counters act as active constants, thus h is the identity on them) and the interpre-
tations of envR at the same states are the same modulo the object renaming defined by h (modulo h-renaming, for short). 
Thus, by considering the relationship established by the labeling function between state components and state labeling, we 
have that δ1

R and δ2
R have the same program counter but environments that are isomorphic under h. By the same argument, 

the above also holds for pcF , envF, pcA, and envA. Thus, δ1
F and δ2

F are the same program modulo h-renaming of their re-
spective environments, and δ1 and δ2 are the same program modulo h-renaming of their respective environments. For the 
same reason, we have that: Final(δ1

R, s1
R) iff Final(δ2

R, s2
R), Final(δ1

F , s1
F ) iff Final(δ2

F , s2
F ), and Final(δ1, s1

F ) iff Final(δ2, s2
F ). In a 

similar way, we can prove that ϑ1 = ϑ2, i.e., the same player is to move at q1 and q2.
Now, observe that, by the definition of T ’s labeling function, the interpretation of the fluents associated with a game 

state qi is essentially that given by DMaps
R at its (combined) situations si

F and si
R . Therefore, an action A(x, sF) is legal for 

〈δ1
R, s1

R〉 iff action A(h(x), sF) is legal for 〈δ2
R, s2

R〉, and, similarly, an action A(x) is legal for 〈δ1
F , s1

F 〉 and 〈δ1, s1
F 〉 iff A(h(x)) is 

such for 〈δ2
F , s2

F 〉 and 〈δ2, s2
F 〉. Consequently, by the definition of T ’s transition relation, since q1 → q′

1, there must exist a 
state q′

2 such that q2 → q′
2. The fact that I(q′

1) ∼h I(q′
2) is a consequence of the fact that: (i) I(q1) ∼h I(q2), i.e., q1 and q2

have the same labeling modulo h-renaming; (ii) the moves q1 → q′
1 and q2 → q′

2 are defined by the same action, modulo 
h-renaming, respectively A(x, sF) and A(h(x), sF), if ϑ1 = ϑ2 = Env, and A(x) and A(h(x)), if ϑ1 = ϑ2 = Ctrl; (iii) Successor-
state axioms are FO formulas, which are invariant to isomorphisms, modulo the object renaming defined by the isomorphism 
itself. Thus move q2 → q′

2 is the same as q1 → q′
1, modulo h-renaming, by which it follows that I(q′

1) ∼h I(q′
2). �

We now address the issue of computing a finite, faithful abstraction of T .

Lemma 2. If a GA T is generic and state-bounded, then a finite, faithful abstraction T̄ of T is effectively computable.

Proof. Existence of T̄ is an immediate application to T of Theorem 17 in [35]. Effective computability and finiteness follow 
from the proof of the same theorem, once we observe that: (i) since T is state-bounded, the successor state q′ of a generic 
state q is computable, hence we do not need to construct T explicitly to build its finite abstraction; (ii) state-boundedness 
of T implies that checking whether two interpretations are isomorphic is decidable; and (iii) there exist only finitely many 
equivalence classes of isomorphic interpretations, thus only finitely many equivalent states. Based on these observations the 
definitions used by the proof to build the abstraction are operational, thus enabling effective construction of T̄ . �

Intuitively, T̄ is a GA obtained from T by collapsing the classes of states having isomorphic interpretations into one 
representative state, and by adding a transition from one class q to another class q′ iff there exists one transition between 
the chosen representatives in T (this, by generality, implies that all states in q have a transition to some state in q′). In 
this paper we do not describe how to obtain this abstraction, but refer the reader to the procedure illustrated in [35]. 
The procedure is applicable to generic transition systems with first-order state representations, of which induced GAs are 
instances. In our setting, the procedure requires that the transition function of T is computable and that the existence of 
an isomorphism between states is decidable, which is indeed the case, as discussed in the proof of Lemma 2. Theorem 5
comes as a direct consequence of Lemma 2.

The resulting GA is T̄ = 〈�̄T , Q̄ , q0, →̄, Ī〉, where �̄, Q̄ , and →̄ are finite subsets of their counterparts in T , and Ī is 
the projection of I over Q̄ , with �T replaced by �̄T . Notice that T and T̄ share the same set F of fluents.
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We conclude this section by characterizing the relationship between T and T̄ , which will be needed when computing 
executable strategies for T from those for T̄ . This result relies on a variant of the well-known notion of bisimulation, called 
persistence-preserving bisimulation, or p-bisimulation for short, defined in [35].

We adapt p-bisimulation to GAs. The notion is defined co-inductively over triples 〈q1, h, q2〉, where q1 and q2 are states 
of two GAs and h ∈ H is an isomorphism between their interpretations which, differently from the case of bisimulation, is 
restricted to the active domains [18].

Definition 10 (p-bisimulation). A relation β ⊆ Q 1 × H × Q 2 is a p-bisimulation between two GAs T1 and T2 if 〈q1, h, q2〉 ∈ β

implies that:

(i) q1 and q2 have isomorphic fluent extensions, according to h : adom(I1(q1)) �→ adom(I2(q2)) (objects not occurring in 
fluent extensions are neglected). We denote this by writing Ĩ1(q1) ∼h Ĩ2(q2);

(ii) for every successor q′
1 of q1 there exists a successor q′

2 of q2 and a bijection b : adom(I1(q1)) ∪ adom(I1(q′
1)) �→

adom(I2(q2)) ∪ adom(I2(q′
2)) that extends h to adom(I1(q′

1)) such that, for the restriction h′ of b to adom(I2(q′
2)), 

〈q′
1, h

′, q′
2〉 is in β;

(iii) the analogue of (ii) holds for every successor q′
2 of q2. �

This property intuitively captures the fact that two states of two GAs T1 and T2 are persistence-preserving bisimilar 
if there is an isomorphism between them that can be extended in successor states, while preserving bisimulation. In other 
words, the identity of objects is preserved as long as they persist in the active domain or if they have just disappeared from 
it. Two GAs are p-bisimilar if their respective initial states are in some p-bisimulation. Since from [35] we have that every 
transition system is p-bisimilar to its faithful abstractions, then we directly have that:

Lemma 3. T is p-bisimilar to T̄ .

The notion of p-bisimilarity will be essential to relate (winning) strategies for T̄ to those of the infinite-state T . This 
will allow us to prove Theorem 6, in the next section.

9.2. Strategy existence

In this section we address Theorem 6, namely showing that there exists a strategy ς on T for player Controller iff a 
winning strategy ς̄ exists on T̄ , relying on the notion of p-bisimilarity introduced above. First, we need a way to relate 
the strategies of two different GAs, and in particular two that are p-bisimilar. This is done through the following definition, 
which we will then apply to T and T̄ .

Definition 11 (p-bisimilar strategy transformation). Consider two GAs T and T ′ that are p-bisimilar, and let ς be a Controller

strategy for T . A strategy ς ′ for T ′ is said to be a p-bisimilar transformation of ς to T , if there exists a p-bisimulation β
such that for every history τ = q0 · · ·q� of T induced by ς , there exists a history τ ′ = q′

0 · · ·q′
� of T ′ induced by ς ′ and a 

sequence of bijections hi : adom(I(qi)) → adom(I(q′
i)), with i ∈ [0, �], such that for every i:

• 〈qi, hi, q′
i〉 ∈ β and

• if I(qi) ∼hi I ′(q′
i) and I(qi+1) ∼hi+1 I ′(q′

i+1) then there exists a bijection b : adom(I(qi)) ∪ adom(I(qi+1)) →
adom(I(q′

i)) ∪ adom(I(q′
i+1)) so that hi = b |adom(I(qi)) and hi+1 = b |adom(I(qi+1)) .1 We call the isomorphism hi+1 the 

update of hi with respect to qi+1 and q′
i+1.

For p-bisimilar GAs, the following result holds.

Theorem 7. If two GAs T and T ′ are p-bisimilar then there exists a Controller strategy ς on T iff there exists a Controller strategy 
ς ′ on T ′ that is a p-bisimilar transformation of ς .

Proof. By p-bisimilarity, there exists a bisimulation β such that for every history τ = q0 · · ·q� of T induced by ς , there 
exists a history τ ′ = q′

0 · · ·q′
� of T ′ that fulfills the requirement of τ ′ in Definition 11. For the if-part, we define ς ′ as 

ς ′(q′
0 · · ·q′

�−1) = q′
� , for every history q0 · · ·q�−1q� of T induced by ς , such that q�−1 |= turnCtrl. The only-if part is analo-

gous. �
In particular, the result holds for memoryless, winning strategies as well (as required by Theorem 2). Hence, by Lemma 3, 

Theorem 6 follows by applying the theorem above with T ′ replaced by T̄ .

1 The symbol | denotes projection.
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T̄ q̄0 q̄1 q̄2 q̄3 · · ·

T q0
Env

q1
Ctrl

q2
Ctrl

q3
Env

· · ·

h0 h1 h2 h3

A(x) B(y) C(z)

ς̄m(q̄1) = q̄2 ς̄m(q̄2) = q̄3

Fig. 5. Executing a winning strategy ς̄m for the faithful abstraction T̄ on the original GA T . Crucially, this approach does not require one to explicitly 
compute T .

10. Computing and executing the controller for the bounded case

Theorem 6 and Theorem 2 provide with a constructive way of transforming a memoryless winning strategy ς̄m for 
Real
(cf. Section 7.1) and T̄ into an actual controller for δ0

R that realizes δ0
F .

Specifically, we follow the construction of Definition 11, thanks to Theorem 7. To do so, we need to relate the states of 
a history τ̄ of T̄ to those of a history τ of T , by applying the isomorphisms that preserve the identity of the objects that 
persist and of those that have just disappeared from the active domain. While the existence of a p-bisimulation β between 
T and T̄ is guaranteed by Lemma 3, we cannot represent it explicitly (T is infinite): the sequence of isomorphisms must 
be computed on the fly.

The procedure works as depicted in Fig. 5. Initially, both T and T̄ are in their initial state (q0 = q̄0) and h0 is the identity 
function. Then, since q0 |= turnEnv and it is the turn of Environment, for any state q1 in T such that q0 → q1 (for some action 
A(x) in the recipe), we select an isomorphic state q̄1 in T̄ such that q1 ∼h1 q̄1, where h1 is the update of h0 with respect 
to q1 and q̄1 as in Definition 11. After this (it is now the turn of Controller), assume q̄2 = ς̄m(q̄1) is the state selected by 
the strategy on the abstraction T̄ . We then select a state q2 such that q2 ∼h2 q̄2, which gives us the move q2 = ςm(q1) on 
T . In the inductive step, assume that τ̄ = q̄0 . . . q̄�−1, with τ = q0 . . .q�−1, is the bisimilar history on T computed so far, 
with last(τ ) |= turnCtrl. Let q̄� = ς̄m(q̄�−1). We proceed in the same way and obtain the move q� = ςm(q�−1) on T , with 
q� ∼h�

q̄� , and so on. In Fig. 5, B(y) and C(z) are the two compound actions which constitute a possible, complete execution 
of the program δA(x) to which the action A(x) is mapped. In q3 the turn is given back to Environment since q3 |= φok .

Following the same reasoning, we can define this as a procedure which constructively computes and executes on-the-fly a 
controller returning the sequence of moves in T which correspond to the implementation of the last move of Environment, 
given a winning Controller strategy ς̄ for T̄ . The procedure is given as Algorithm 1, which is initially called for q̄ = q = q0
and with h initialized as the identity function. Note that the procedure computes the next compound action to execute on 
the fly, by restricting only to the execution of the GA T that is being determined at runtime.

Algorithm 1 execute_controller(T̄ , ς̄m, ̄q, q, h).
1: let q = 〈·, δR, sR, δF, sF, ·〉 – we use · for don’t care elements
2: if q |= φok then
3: let q′ = 〈turnCtrl, δ′

R, s′
R, δ′

F, s′
F, ·〉 be the state of T selected by the Environment, with q → q′ .

This corresponds to some recipe action A(x, S0
F ) such that s′

R = do(A(x, S0
F ), sR);

4: let q̄′ be a state of T̄ , with q̄ → q̄′ , that is isomorphic to q′ , i.e., such that q′ ∼h′ q̄′ , for h′ the update of h w.r.t. q′ and q̄′;
5: else
6: let q̄′ = ς̄m(q̄) be the state of T̄ selected by the winning strategy;
7: let q′ = 〈·, δ′

R, s′
R, δ′

F, s′
F, ·〉 in T be such that q → q′ and q′ ∼h′ q̄′ , for h′ the update of h w.r.t. q′ and q̄′;

8: execute the action B(y) on T , so that s′
F = do(B(y), sF);

9: end if
10: if q′ �|= φok ∧ finalEnv then
11: execute_controller(T̄ , ς̄m , q̄′ , q′ , h′);
12: end if

For simplicity, differently from the formal definition of controller (but consistent with the notion of memoryless strate-
gies), the procedure returns, at each step, a single compound action to be executed in the facility rather than returning 
a complete sequence of actions. Indeed, according to Definition 2, a controller for δ0

F that realizes δ0
R is a function 

ρ : Cδ0
R

× Cδ0
F

× Cδ0
R

�→ C
∗
δ0

F
which, given the current configurations of the recipe and facility together with a new selected 

configuration for the recipe, returns a sequence of new configurations for the facility. This sequence, in turn, identifies the 
sequence of compound actions to execute. It is however possible to reconstruct the function ρ from the execution of Al-
gorithm 1: given q at line 1, which specifies the current configurations 〈δR, sR〉 and 〈δF, sF〉 of the recipe and of the facility 
process, given then a new configuration 〈δ′

R, s′
R〉 for the recipe as in line 3, then ρ(〈δR, sR〉, 〈δF, sF〉, 〈δ′

R, s′
R〉) is defined as the 

sequence of configurations 〈δ′
F, s

′
F〉 of the facility process as in line 7, computed by the iterative execution of the procedure, 

until a new state q such that q |= φok is reached (i.e., then the turn is given back to the Environment player in the GA T ).
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· · ·

load(f,4,steel,810,756,29) {equip(gripper,3)} {in_cell(f,4,steel,810,756,29,3)}

load(b,2,steel,312,23,20){in(f,2),out(f,3)}{equip(driller,1),unequip(3)}

{in_cell(b,2,steel,312,23,20,5)}

drill(f,.3,200,123,89,21)

{set_bit(bit_#7,drill,.3,1),equip(pressure_hollow,3)}

{robot_drill(f,bit_#7,.3,200,12,123,89,21,1),
hold_in_place(fb,3k,2),pressure(fb,2k,flat,3)}

drill(f,.3,200,123,89,21)

{in(f,2),out(f,3)}

{equip(driller,1),unequip(3)}

{set_bit(bit_#7,drill,.3,1),equip(pressure_hollow,3)}

{robot_drill(f,bit_#7,.3,200,12,123,89,21,1),
hold_in_place(fb,3k,2), pressure(fb,2k,hollow,3)}

load(b,2,steel,312,23,20){in_cell(b,2,steel,312,23,20,5)}
apply_glue(b,str_adh)

{safety_switch(on,5)} {enter(5)} {spray_glue(f,glue_#36,5)}

Fig. 6. A fragment of a possible controller for δ0
F that realizes δ0

R as in the running example, represented as a control structure in which double-circled 
control states correspond to states q of T such that q |= φok , i.e., it is the turn of player Environment. Dashed transitions from these control states are 
labeled with the next action of the recipe, and the rest with compound actions for the facility process (we do not include nop actions for brevity). Each 
control state is associated to configurations of δ0

F and δ0
R , indicating their current program and situation, but these are not shown for brevity.

Example 5 (A controller for the running example). The controller for the facility process δ0
F described in Section 5 that realizes 

the recipe δ0
R in Example 4, corresponding to a possible winning strategy for player Controller, is depicted graphically 

in Fig. 6. For brevity, let us refer to 〈Di, δi〉, with i ∈ {1, . . . , n}, by Ri . We now show how to execute this controller: at 
the beginning, the recipe can only execute action load(f,4,steel,810,756,29). In response, the controller prescribes the 
execution of two compound actions. With the first, resource R3 equips an end effector in order to prepare the loading 
of the part b into the cell (recall that b denotes a partid), while all other resources remain idle. The compound action is 
{nop, nop, equip(gripper,3), nop, nop}. With the second, R3 loads the part while other resources remain idle: the compound 
action is {nop, nop, in_cell(f,4,steel,810,756,29,3), nop, nop}. At this point, two alternatives are possible for the recipe: 
the next instruction is load(b,2,steel,312,23,20) ‖ drill(f,.3,200,123,89,21), that is, the recipe can either first load part 
b or first drill a hole in f. As shown in Fig. 6, in the former case this controller first makes it so that f is moved from R3 to 
R2, then R3 detaches the gripper while R1 equips a drilling end effector to prepare for the next recipe request, and finally 
R5 (the operator) is instructed to fetch part b (without entering the cell). In the latter case, after the same preparatory 
steps, R1 sets the correct drill bit in the driller while R3 equips a hollow pressure applicator; then R1 is instructed to 
perform the drilling of the part f which is now currently held on R2 (the fixture), while R3 is applying pressure to balance 
the drilling force. Note that there are some arguments of these actions that were determined by the procedure given as 
Algorithm 1: for instance, the drill bit (bit_#7), the feed rate (12), the glue (glue_#36). These arguments corresponded to 
pick variables (i.e., nondeterministic choice of arguments) in the programs determined by the mappings Maps. Since the GA 
is generic, any alternative value which is equivalent modulo isomorphism could have been selected.

The interaction between the recipe, the controller and the facility program continues until the recipe is completed. A 
possible resulting execution of this controller, for a possible evolution of recipe δ0

R , is the following (nop actions are omitted):
1 : {equip(gripper,3)}
2 : {in_cell(f,4,steel,810,756,29,3)}
3 : {in(f,2), out(f,3)}
4 : {equip(driller,1), unequip(3)}
5 : {in_cell(b,2,steel,312,23,20,5)}
6 : {set_bit(bit_#7,drill,.3,1), equip(pressure_hollow,3)}
7 : {robot_drill(f,bit_#7,.3,200,12,123,89,21,1), hold_in_place(f,3k,2), pressure(f,2k,hollow,3)}
8 : {safety_switch(on,5)}
9 : {enter(5)}
10 : {spray_glue(f,glue_#36,5)}
11 : {position(f,b,fb,7,201,29,5)}
12 : {exit(5)}
13 : {safety_switch(off,5)}
14 : {set_bit(bit_#22,cntr_reaming,.3,1)}
15 : {robot_drill(fb,bit_#22,.3,123,89,21,1), hold_in_place(fb,3k,2), pressure(fb,2k,hollow,3)}
16 : {unequip(1), unequip(3)}
17 : {equip(rivet_gun,1), equip(pressure_flat,3)}
18 : {rivet(fb,alu_rvt_.3,123,89,21,1), hold_in_place(fb,2k,2), pressure(fb,1k,flat,3)}
19 : {start_compressor(1), unequip(3)}
20 : {unequip(1), out(fb,2), in(fb,3)}
21 : {equip(gripper,3)}
22 : {out_cell(fb,ok,3)}
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This sequence exemplifies a specific execution of the facility in which the second load operation is executed before drill

and the test on the observation represented by the fluent precision is false, i.e., R3 does not have high drilling precision. 
Counter-reaming is thus necessary: the situation-independent fluent prec_rating(high,3) is not in DF .

Specifically, the compound actions at lines 1-2 implement the action load(f,4,steel,810,756,29) in the recipe; the com-
pound actions in lines 3-5 implement the action load(b,2,steel,312,23,20); the compound actions in lines 6-7 implement 
drill(f,.3,200,123,89,21); the compound actions in lines 8-10 implement apply_glue(b,str_adh); the compound action in 
line 11 implements place(b,f,fb,7,201,29); those in lines 12-15 implement reaming(fb,.3,123,89,21); those in lines 16-18
implement rivet(fb,123,89,21) and finally the remaining lines implement store(fb,ok).

Notice, however, that each of these segments does not exactly correspond to the mapped program for each action in the 
recipe: additional low-level operations are added to take care of movements of parts and other preparatory steps. These are 
automatically computed by our procedure. �
11. Conclusions

The ability of manufacturing providers to automatically assess the manufacturability of products and synthesize process 
plan controllers is essential to realize any real-world MaaS application. Research in Artificial Intelligence and Computer 
Science can be exploited to provide mathematical foundations for the manufacturing concepts and to solve the core challenges 
of MaaS, as shown by recent efforts in basing MaaS on fundamental ideas from CS and advancements in AI.

On the one hand, this has allowed previous approaches to formalize the requirements and techniques for the automated 
synthesis of process plan controllers [9,11–13,43,44] and offer a formal foundation to practical manufacturing approaches 
[14,15,45]. On the other hand, however, these previous approaches are based on a propositional description of the states of the 
devices, workpieces, and processes, and such representations are too idealized for implementing fully-fledged applications. 
While in some simpler scenarios a propositional approach may be sufficient, the resulting discretization is unwieldy and 
unnatural and, more importantly, cannot deal with potentially unbounded objects. Concrete and realistic approaches for 
MaaS necessarily require a rich, relational description of states, as well as advanced computational techniques that are able 
to manipulate this relational representation: real manufacturing processes depend on the objects and data they produce and 
consume, which are in general unbounded.

In this paper, we have addressed these shortcomings and proposed a formal logical framework that explicitly accounts 
for this dependency. Our approach offers a “data-aware” process formalization where data and objects are treated as first-
class citizens, addressing relational representations of the states by relying on the research on reasoning about actions in AI. 
Critically, we did not rely on ad-hoc representations. Our framework uses Situation Calculus action theories for capturing 
actions in manufacturing processes, and high-level ConGolog programs over such action theories for capturing the processes 
defined over these actions. This makes a whole body of related work readily available to address a number of problems 
arising in the context of manufacturing systems [46–51]. In addition, we can leverage the first-order state representations 
of action formalisms and the second-order/fixpoint characterization of state-change provided by programs, giving a formal 
and declarative representation of the MaaS manufacturing setting. We have also shown that these techniques are actually 
effective, in that they correspond to actual algorithms that allow the extraction of actual controllers when the objects and 
data in the resulting Situation Calculus action theories are never “accumulated” (i.e., state-bounded theories [18]). This is the 
first decidability result for controller synthesis in a relational/first-order state reasoning about actions settings such as the 
Situation Calculus.

We have only scratched the surface of what KR formalisms like the Situation Calculus can bring to this new manufactur-
ing paradigm. Our results and constructions can be applied in other frameworks for reasoning about actions in AI as well 
as data-aware/artifact-centric processes frameworks in databases [19–21]. Furthermore, it would be interesting to equip re-
sources with autonomous deliberation capabilities [52], e.g., to react to exogenous events during execution, or to monitor 
streaming production data [53], to include an explicit treatment of time and other continuous value quantities [54], or to 
consider non-Markovian action theories [55] for manufacturing recipes. We plan to address these directions as future work. 
With the theory and framework in place, a next step is to devise actual tools for the synthesis of manufacturing processes, 
that are based on a ConGolog formalization. In this respect, possible approaches to start from are, e.g., those of [56], based 
on predicate abstraction, or [57,58], where verification is addressed by resorting to First-Order BDDs, and [59], where (LTL) 
realizability is addressed by compilation into safety and reachability games.
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