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Abstract
We address the problem of model checking first-
order dynamic systems where new objects can be
injected in the active domain during execution.
Notable examples are systems induced by a first-
order action theory expressed, e.g., in the situ-
ation calculus. Recent results show that, under
state-boundedness, such systems, in spite of hav-
ing a first-order representation of the state, admit
decidable model checking for full first-order mu-
calculus. However, interestingly, model check-
ing remains undecidable in the case of first-order
LTL (LTL-FO). In this paper, we show that in
LTL-FOp, the fragment of LTL-FO where quantifi-
cation ranges only over objects that persist along
traces, model checking state-bounded systems be-
comes decidable over infinite and finite traces. We
then employ this result to show how to handle mon-
itoring of LTL-FOp properties against a trace stem-
ming from an unknown state-bounded dynamic
system, simultaneously considering the finite trace
up to the current point, and all its possibly infinite
future continuations.

1 Introduction
Data-aware dynamic systems are, essentially, transition sys-
tems (TS) whose states are labelled by first-order (FO) in-
terpretations, here referred to as relational TSs (RTS). Ini-
tially studied in database theory [Bhattacharya et al., 2007;
Deutsch et al., 2009; Bagheri Hariri et al., 2013b], the AI
community has paid growing attention to these systems in the
last decade, adopting them as models for logically-specified
systems, e.g., action theories in the situation calculus [Mc-
Carthy and Hayes, 1969; Reiter, 2001], possibly operating
over description-logic knowledge bases [Bagheri Hariri et al.,
2013a; Calvanese et al., 2016; Borgwardt et al., 2022]. Such
interest concerns, in particular, verification [Calvanese et al.,
2018; Belardinelli et al., 2014; Bagheri Hariri et al., 2013b;
De Giacomo et al., 2012; De Giacomo et al., 2016] and
synthesis (typically, planning) [Baier and McIlraith, 2006;
Calvanese et al., 2016; Borgwardt et al., 2022].

This paper focuses on verification of RTSs. Several tem-
poral logics have been previously proposed, and in particular

a FO extension of the propositional µ-calculus, the FO µ-
calculus, for which decidability results have been obtained,
under a condition of state-boundedness and genericity of the
RTS, and syntactic restrictions on the logic which limit the
power of quantifiers [Calvanese et al., 2018; Bagheri Hariri
et al., 2013b]. State-boundedness holds when the interpre-
tations labeling the states of an RTS contain only a bounded
number of distinct objects; genericity essentially captures the
inability of distinguishing isomorphic interpretations.

Previous works (see references above) provide a complete
picture for branching-time logics (all virtually subsumed by
FO µ-calculus) but are poorly conclusive for linear-time. In
particular, Calvanese et al. [2018] show that verification is un-
decidable for the FO extension of linear-time temporal logic
(LTL-FO) but do not investigate decidable fragments. This
work completes the picture for LTL-FO interpreted over both
infinite [Pnueli, 1977] and finite traces [De Giacomo and
Vardi, 2013]. While, for concreteness, we assume RTSs are
described by situation calculus BATs, our results can be ap-
plied also to other logical formalisms which guarantee gener-
icity (and boundedness, when needed).

Our approach mirrors the one adopted by Calvanese et
al. [2018]. Starting from the most expressive logic, LTL-FO,
we consider two increasingly stricter fragments, LTL-FOa

and LTL-FOp, obtained by increasingly limiting the power of
quantifiers: in LTL-FOa, they range over active objects (i.e.,
occurring in the interpretation of some fluent); in LTL-FOp,
they range over active persisting objects (i.e., remaining ac-
tive in consecutive states). After re-establishing undecidabil-
ity of LTL-FOa, thus of LTL-FO, with a proof which, differ-
ently from the one by Calvanese et al. [2018], isolates the
source of undecidability, we investigate LTL-FOp and prove
its decidability. Interestingly, LTL-FOa undecidability con-
trasts with the decidability of its branching-time counterpart
µLa (FO µ-calculus with quantification over active objects)
proven by Calvanese et al. [2018].

Decidability of verification paves the way to monitoring,
i.e., the problem of checking whether a trace stemming from
the execution of an unknown dynamic system does or does
not satisfy an LTL-FO property and/or may/will in the future.
We show that, for LTL-FOp, this can be done via a direct ap-
plication of the obtained results, again under a boundedness
assumption, naturally fulfilled in the context of Process Min-
ing [van der Aalst, 2016], thus making the obtained results
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interesting also in that context.

2 Relational Transition Systems
We recall notions and results by Calvanese et al. [2018]. A
(first-order) vocabulary is a pair σ = ⟨F , C⟩, with F the
set of predicate fluents and C the set of active (object) con-
stants. Given an interpretation (object) domain ∆ with stan-
dard names s.t. C ⊆ ∆, we denote by Intσ∆ the set of all
F and C interpretations over ∆ that are the identity on every
c ∈ C.
Definition 1 (Relational Transition System, RTS) Given a
vocabulary σ = ⟨F , C⟩ and an object domain ∆ s.t. C ⊆
∆, an RTS (over σ and ∆) is a tuple T = ⟨∆, S, s0,→, I⟩,
s.t.: (i) S is a set of states; (ii) s0 ∈ S is the initial state;
(iii) → ⊆ S × S is a transition relation; and (iv) I : S 7→
Intσ∆ is a labeling function associating each state s ∈ S with
an interpretation I(s) = ⟨∆, ·I(s)⟩ (s.t. cI(s) = c, c ∈ C). ◁

For an RTS T = ⟨∆, S, s0,→, I⟩, a T -run is a (possibly
infinite) sequence ρ = s0 s1 · · · of states, s.t.: (i) s0 is T ’s
initial state, and (ii) si → si+1, for all si, si+1 in ρ. A
trace over Intσ∆ is a possibly infinite sequence τ = I0 I1 · · ·
s.t. each Ii ∈ Intσ∆. By τ(i) we denote Ii and by |τ | the
length of τ , i.e., the (possibly infinite) number of FO inter-
pretations in τ . A trace of T is a trace τ = I0 I1 · · · over
Intσ∆ s.t. Ii = I(si), for some run ρ = s0 s1 · · · ; in this case,
we also say that ρ induces τ . A maximal T -run is either an
infinite run or a run s0 · · · sℓ s.t. for no state sℓ+1 ∈ S it holds
that sℓ → sℓ+1. A trace of T is maximal if it is induced by a
maximal T -run.

We denote by adom(I(s)) the active domain of I(s), i.e.,
the set of objects occurring in the interpretation of some fluent
in s, plus the constants in C. By Ĩ(s) = ⟨adom(I(s)), ·I(s)⟩,
we denote the restriction of I(s) to its active domain. Two in-
terpretations I1 = ⟨∆1, ·I1⟩ and I2 = ⟨∆2, ·I2⟩ over vocab-
ulary σ = ⟨F , C⟩ are said to be isomorphic, written I1 ∼ I2,
if there exists a bijection (called isomorphism) h : ∆1 7→ ∆2

s.t.: (i) for every F ∈ F , it holds that o⃗ ∈ F I1 if and only
if h(o⃗) ∈ F I2 ; and (ii) for every c ∈ C, cI2 = h(cI1). In-
tuitively, isomorphic interpretations are the same modulo re-
naming of the objects in the interpretation domain. When
needed, we write I1 ∼h I2, to make the isomorphism h be-
tween I1 and I2 explicit. We can now define generic RTSs.
Definition 2 (Generic RTS) An RTS T = ⟨∆, S, s0,→, I⟩
is generic if: for every s1, s

′
1, s2 ∈ S and every bijection

h : ∆ 7→ ∆, if I(s1) ∼h I(s2) and s1 → s′1, then there
exists s′2 ∈ S such that s2 → s′2 and I(s′1) ∼h I(s′2). ◁

Intuitively, this says that if s1 and s2 have the same inter-
pretations modulo renaming, then every successor s′1 of s1
has the same interpretation, modulo renaming, of a successor
s′2 of s2, and vice-versa (as states are quantified universally
and isomorphisms are invertible). That is, if two states are
isomorphic, they induce the same transitions modulo object
renaming. As discussed by Calvanese et al. [2018], generic-
ity arises when transitions stem from logical specifications,
such as in the situation calculus, when no extra-logical prop-
erties are involved that require predefined domains and rela-
tions (e.g., integers and their order).

Next we introduce state-bounded RTSs, i.e., RTSs con-
taining a bounded number of objects in the active domain
of states, a property that turned out essential for the verifi-
cation of various temporal logics [Belardinelli et al., 2014;
Bagheri Hariri et al., 2013b; De Giacomo et al., 2012;
De Giacomo et al., 2016; Calvanese et al., 2018].

Definition 3 (State-Bounded RTS) An RTS T =
⟨∆, S, s0,→, I⟩ is (state-)bounded by b ∈ N if
|adom(I(s))| ≤ b, for every s ∈ S. We say that T is
state-bounded if it is state-bounded by b for some b. ◁

Notice that state-boundedness allows for the occurrence of
infinitely many objects along a run, although only boundedly
many at each state. This is a semantic property that naturally
arises in situations of practical interest [De Giacomo et al.,
2016; Bagheri Hariri et al., 2014].

RTSs can be specified with several formalisms, such as the
situation calculus [De Giacomo et al., 2016; Calvanese et al.,
2018], which we use here; the obtained results, however, can
be applied to any other formalisms for representing RTSs. We
briefly recall the situation calculus, referring the reader to the
book by Reiter [2001] for a more detailed introduction.

The situation calculus includes terms from three disjoint
sorts: objects, i.e., entities in the domain of interest; actions,
i.e., events that trigger world changes; and situations, i.e., se-
quences of actions applied in the situation resulting from pre-
vious applications. The constant S0 denotes the initial situa-
tion (no action performed) and the function symbol do allows
for building situation terms: do(a, s) denotes the situation
resulting from the execution of action a in situation s. We
assume countably infinitely many object constants under the
unique name assumption (UNA, distinct constants denote dis-
tinct objects), but do not assume domain closure for objects
(not all objects are denoted by a constant).

Fluents are predicates and functions whose value depends
on the situation. The situation is, by convention, the last argu-
ment, as in Holding(o, s) (object o is being held in situation
s). Wlog, we assume no functions other than constants and no
non-fluent predicates. All (but the last) fluent arguments are
of sort object. Finally, we assume a finite number of action
types, each taking a tuple of objects as arguments.

Situation calculus (action) theories describe dynamic do-
mains. We focus on basic action theories (BATs). A BAT D
is the union of the following disjoint sets of first-order (FO)
and second-order (SO) axioms:

1. D0: (FO) initial situation description axioms describing
the initial configuration (may or may not be complete);

2. Dposs: one (FO) precondition axiom Poss(A(x⃗), s) ≡
ϕA(x⃗, s) per action type A, stating the precondition
ϕA(x⃗, s) for legal execution of action A(x⃗) in situation
s, with special predicate Poss(a, s) expressing that ac-
tion a is executable in s and with ϕA(x⃗, s) a situation
calculus formula uniform in s [Reiter, 2001], i.e., men-
tioning only s as a situation term and not mentioning
Poss;

3. Dssa: one (FO) successor state axiom F (x⃗, do(a, s)) ≡
ϕF (x⃗, a, s) per fluent F , describing how F changes
when action a is executed in s, with ϕF (x⃗, a, s) uniform
in s;



4. Dca: (FO) unique name axioms for actions and (FO)
domain closure on action types;

5. Duno: (FO) unique name axioms for object constants;
6. Σ: (SO) foundational, domain independent, axioms of

the situation calculus [Reiter, 2001].
A situation s is executable if every action performed in reach-
ing s is executable in the situation where it is performed.

Consider a model M of a BAT D, with object domain
∆ and executable situation domain S. Intuitively, this is
obtained by fixing an interpretation of the initial situation
(which is unique, modulo object renaming, if the descrip-
tion is complete), and then using precondition and successor-
state axioms to generate the model. Let C be the set of con-
stants mentioned in D and assume, wlog, they all occur in
D0. For every situation s ∈ S , define the FO interpretation
IM (s)

.
= ⟨∆, ·I⟩, where: (i) for every c ∈ C, cI = cM

and (ii) for every (situation-suppressed) fluent F of D, F I =
{o⃗ | ⟨o⃗, s⟩ ∈ FM}. The RTS induced by M [Calvanese
et al., 2018] is defined as the RTS TM = ⟨∆, S, s0, I,→⟩,
where: (i) S = S; (ii) s0 = SM

0 ∈ S; (iii) → ⊆ S × S is
s.t. s → s′ iff there exists some action a s.t. ⟨a, s⟩ ∈ PossM

and s′ = doM (a, s); (iv) For every s ∈ S , I(s) = IM (s).
Intuitively, TM is the tree of M ’s executable situations with
each situations s labelled by an interpretation of fluents (and
constants), corresponding to the interpretation that M asso-
ciates to s. As such, TM contains, in general, infinitely many
states (i.e., as many as the executable situations of D). Notice
that transitions do not carry information about actions. BATs
enjoy the following key result.
Theorem 4 (Calvanese et al. 2018) For every model M of a
BAT D, the induced RTS TM is generic.

This result states that every RTS induced by a BAT D
(through its models) is generic. Unfortunately, an analogous
result does not hold for the other critical property of RTS,
i.e., state-boundedness. To capture this, [De Giacomo et al.,
2016] introduce a semantical definition. For a situation s, let
Executable(s) be a situation calculus formula expressing that
s is executable. Given a model M of a BAT D and a situation
s, let Boundedb(s) be a situation calculus formula expressing
that the extensions of all fluents at s according to M contain,
overall, at most b ∈ N distinct objects (in the original defini-
tion, the bound was on the number of tuples for each fluent).
Then, a BAT D is said to be bounded, if all of its models M
yield that all executable situations are bounded.
Definition 5 (Bounded BAT [De Giacomo et al., 2016]) A
BAT D is said to be bounded by b ∈ N, if:

D |= ∀s.Executable(s) ⊃ Boundedb(s).

The following is an immediate consequence of Definition 5.
Theorem 6 If D is a BAT bounded by b, then every model
M of D induces a state-bounded RTS TM .

3 Linear-time Temporal Logic FO Variants
We focus on languages that combine linear-time and FO prop-
erties, obtaining a hierarchy that mirrors, in the linear-time
setting, that of FO µ-calculi studied in [Calvanese et al.,
2018]. In the literature, the semantics of linear-time temporal

(LTL) logics is typically provided in two alternative variants,
over either infinite [Pnueli, 1977; Baier and Katoen, 2008]
or finite [Baier and McIlraith, 2006; De Giacomo and Vardi,
2013] traces. We adopt both at once. For a FO vocabulary
⟨F , C⟩, LTL-FO (FO linear-time logic) is as follows:

φ ::= ⊤ | ϕ | ¬φ | φ1 ∧ φ2 | ∃x.φ | Xφ | φ1 Uφ2,

where ϕ is an atomic FO formula F (t1, . . . , tr), with F ∈ F
and each ti a variable or a constant from C. Formulae where
all variables are quantified, which are the only ones of interest
here, are said to be closed. We use the standard abbreviations:
(i) ⊥ = ¬⊤, (ii) φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), (iii) φ ⊃ ψ =
¬φ ∨ ψ, (iv) ∀x.φ = ¬∃x.¬φ, (v) Fφ = ⊤Uφ, (vi) Gφ =
¬F¬φ.

LTL-FO formulae are interpreted over finite or infinite
traces over Intσ∆, for some domain ∆, with all constants in
C interpreted rigidly, and equality interpreted as the identity.
The interpretation is relative to a position i ≥ 0 and a val-
uation v mapping variables into ∆. By v[x/o] we denote
a valuation that matches v on all variables except x, with
v[x/o](x) = o. We inductively define when a trace τ sat-
isfies an LTL-FO formula φ at position i ≥ 0 under valuation
v, written (τ, i, v) |= φ, as follows (|τ | = ∞ for inifinite τ ):

1. (τ, i, v) |= ⊤, if 0 ≤ i < |τ |;
2. (τ, i, v) |= ϕ, if 0 ≤ i < |τ | and (τ(i), v) |= ϕ;
3. (τ, i, v) |= ¬φ, if (τ, i, v) ̸|= φ;
4. (τ, i, v) |= φ1 ∧φ2, if (τ, i, v) |= φ1 and (τ, i, v) |= φ2;
5. (τ, i, v) |= ∃x.φ, if there exists o ∈ ∆τ(i) s.t.

(τ, i, v[x/o]) |= φ;
6. (τ, i, v) |= Xφ, if 0 ≤ i < |τ |−1 and (τ, i+1, v) |= φ;
7. (τ, i, v) |= φ1 Uφ2, if:

• there exists i ≤ k < |τ | s.t. (τ, k, v) |= φ2, and
• for every j, if i ≤ j < k then (τ, j, v) |= φ1;

If φ is closed, we omit v and simply write (τ, i) |= φ. Ob-
serve that the next operator X is interpreted as strong next,
which requires existence of a successor state in τ . This is im-
portant if τ is finite and irrelevant otherwise. If needed, the
weak next operator Xw, which does not require existence of
the successor state, can be expressed as Xw φ = ¬X¬φ.

As we shall see, the central problem of this paper, i.e.,
checking whether the maximal traces of an RTS satisfy an
LTL-FO formula, is undecidable. Thus, the need arises for
identifying decidable classes. Following the same approach
as the one by Bagheri Hariri et al. [2013b] and Calvanese et
al. [2018], by imposing syntactic restrictions, we define two
notable fragments of LTL-FO. The fragment LTL-FOa is as
follows:

φ ::= ⊤ | ϕ | ¬φ | φ1∧φ2 | ∃x.LIVE(x)∧φ | Xφ | φ1 Uφ2,

where LIVE is a FO-definable predicate denoting membership
of x to the active domain, defined as an abbreviation for the
disjunction

∨
P (. . . , x, . . .) over all predicates P ∈ F and all

positions of x in P (. . . , x, . . .). Observe that quantification
in LTL-FOa is allowed only on objects in the active domain.
For instance, the logic cannot express that some object not
occurring in the current state will occur in a future state.

Example 7 The following LTL-FOa formula expresses that
along a trace, it is always the case that if for some live object



x, P (x) holds, then eventually there exists a live object y
s.t. Q(x, y) holds:

φa = G(∀x.(LIVE(x) ∧ P (x)) ⊃
(F ∃y.LIVE(y) ∧Q(x, y))). ◁

The other fragment of interest is LTL-FOp, which restricts
quantification to persisting objects, i.e., occurring in the ac-
tive domain of consecutive states. For example, one cannot
say that some object enters and leaves the active domain in
different states. Formulae of LTL-FOp are defined as follows,
where x⃗ and y⃗ can have common variables:

φ ::= ⊤ | ϕ | ¬φ | φ1 ∧ φ2 | ∃x.LIVE(x) ∧ φ |
LIVE(x⃗) ∧Xφ(x⃗) | (LIVE(x⃗, y⃗) ∧ φ1(x⃗))Uφ2(y⃗).

Example 8 The following LTL-FOp formula expresses a
property analogous to that of φa in Example 7, except that
it requires x to persist in the active domain, until a state is
reached where there exists y s.t. Q(x, y) holds:

φp1 = G(∀x.(LIVE(x) ∧ P (x)) ⊃
(LIVE(x)U∃y.LIVE(y) ∧Q(x, y))).

Observe that φa, instead, does not require x to persist, i.e.,
x can leave and re-enter the active domain along the trace
(although it must eventually show up to make Q(x, y) true).◁

Notice that LTL-FOp can express properties over objects
that are present in the current state but disappear in the next
one, while it cannot predicate over the same object in non-
adjacent states, unless that object is asserted to persist in be-
tween.
Example 9 Formula ∃x.LIVE(x) ∧ X¬LIVE(x) is a legal
LTL-FOp formula expressing that an object in the current ac-
tive domain disappears next. Instead, the LTL-FOa formula
∃x.LIVE(x) ∧ XX¬LIVE(x) (with two unrestricted nested
strong next operators) is not a legal LTL-FOp formula. ◁

Finally, observe that the case of the until operator U works
analogously to that of strong next. In fact, formulae of the
form (LIVE(x⃗, y⃗) ∧ φ1(x⃗))Uφ2(y⃗) require objects x⃗ and y⃗
to persist in the active domain in all states from the current
one up to the one immediately preceding the state in which
φ2(y⃗) holds.

4 Model Checking
We now focus on model checking (or verification) of RTSs
against LTL-FO. For concreteness, we assume RTSs are spec-
ified by BATs (and fixed object domains), but the obtained
results can be applied to any logical formalism that yields
genericity and boundedness (when needed) in the induced
RTS. In order to specify RTSs, we use BATs with a com-
plete initial situation description (i.e., s.t. D0 admits exactly
one model up to object renaming), interpreted over a given
object domain ∆. This implies that the BAT D has a unique
model (up to object renaming), thus defines a unique RTS.

Given an RTS T and an LTL-FO formula φ, we say that
T satisfies φ, written T |= φ, if τ |= φ, for all maximal
traces τ of T . Model checking φ over T consists in checking
whether T |= φ. Observe that, since LTL-FO can express

trace finiteness with formula φfin = F¬X⊤ (there exists a
point with no successor), one can specialize model checking
to consider either finite or infinite traces only. This leads to
the definitions of finite and infinite model checking, which
respectively amount to checking whether T |= φfin ⊃ φ and
T |= φfin ∨ φ.

4.1 Undecidability
Unsurprisingly, verification is undecidable in general, even
for RTSs specified by severely restricted BATs and formulae.
Theorem 10 Model checking of a formula F p, with p a
proposition, is undecidable over RTSs of the form T =
⟨∆, S, s0,→, I⟩ induced by BATs over ∆ with complete ini-
tial situation description and two unary fluents.

Proof (Sketch) By reduction from non-emptiness of deter-
ministic 2-counter Minsky automata [Minsky, 1967], which
is undecidable. A BAT D that models a generic counter au-
tomaton A can be written s.t.: (i) each counter is modeled
by a unary fluent; (ii) the number of objects in each fluent
represents the value of the counters; (iii) the automaton states
are modeled as propositions, with all counters null in the ini-
tial state and the final state denoted by special proposition p;
(iv) BAT actions simulate increment, conditional decrement,
and zero-testing over counters. It can be proven that A is
non-empty iff T |= F p, for T the (unique) RTS induced by
D. □

Notice that Theorem 10 seamlessly applies also to finite
and infinite model checking. In all cases, undecidability
is ultimately due to the possibility of storing unboundedly
many objects in fluents, which allows for modeling coun-
ters. It is natural to ask oneself whether limiting this abil-
ity by requiring state-boundedness [Belardinelli et al., 2012;
Bagheri Hariri et al., 2013b] yields decidability, as is the case
in the branching-time setting for FO µ-calculus [Calvanese et
al., 2018]. Unfortunately, this is not the case: model check-
ing for LTL-FOa, thus LTL-FO, is undecidable even for state-
bounded BATs. This is proven by Calvanese et al. [2018,
Thm. 18] by reduction from satisfiability of LTL with freeze-
quantifiers over infinite data-words and using one register
only [Demri and Lazic, 2009]. With a minimal variation, that
reduction can be lifted to encode satisfiability of LTL with
freeze-quantifiers over finite data-words, which is also unde-
cidable, but requires two registers [Demri and Lazic, 2009].
This leads us to the following undecidability result, which
holds in particular for finite model checking.
Theorem 11 There exists 1-bounded BAT D with complete
initial situation description and two unary fluents P1, P2

s.t. finite model checking an LTL-FOa formula using P1 and
P2 is undecidable over the RTS T = ⟨∆, S, s0,→, I⟩ in-
duced by D over ∆.

Calvanese et al. [2018, Thm. 18] and Theorem 11 do not
help in singling out the essential features of LTL-FOa that
cause undecidability, as encoding LTL with freeze-quantifiers
requires to employ the whole LTL-FOa logic, with the only
restriction that atomic FO formulae are unary. For infinite
model checking, we can actually identify a more restricted,
informative undecidable fragment of LTL-FOa. To this end,



we propose an alternative proof that recasts the proof by
Demri and Lazic [2009, Thm. 5.2] into our setting. This al-
lows us to show undecidability of infinite model checking for
a fixed 1-bounded BAT already for the fragment of LTL-FOa

consisting of unary recurrence formulae, defined next.
Unary recurrence formulae are LTL-FOa formulae as be-

low, where p, q1, q2, q3 are propositional formulae, P is
a unary fluent, both occurrences of

⊙
denote either XF

or F, and [·] denotes optionality (observe that P (x) implies
LIVE(x)):

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 |
G(∀x.(P (x) ∧ q1) ⊃ [¬]

⊙
(q2 ∧

⊙
(P (x) ∧ q3))).

Theorem 12 There exists 1-bounded BAT D with complete
initial situation description and a unary fluent P s.t. infinite
model checking unary recurrence formula using P is unde-
cidable over the RTS T = ⟨∆, S, s0,→, I⟩ induced by D
over ∆.

Proof (Sketch) By reduction from non-emptiness of counter
automata with incrementing errors over infinite executions,
which is undecidable even though these automata are weaker
than Minsky automata [Demri and Lazic, 2009]. D over-
approximates the infinite executions of all counter machines
with incrementing errors, operating over a given set of con-
trol states. Unary recurrence formulae are used to isolate the
executions that encode those of a given automaton, and to ex-
press its non-emptiness. □

4.2 Persistence-Preserving Trace Equivalence
Unary recurrence formulae exploit the essential feature of
LTL-FOa to quantify over objects across states. In this sec-
tion, we investigate whether limiting further this ability, as
done in LTL-FOp, which restricts quantification to persisting
objects only, is beneficial for obtaining decidability. This will
turn out to be the case.

We start by introducing a notion of equivalence among
traces which captures the intuition that two traces match mod-
ulo renaming of the active objects wrt every pair of consecu-
tive states. In other words, only persisting objects are required
to maintain their renaming.

Definition 13 Two traces τ1 and τ2 over σ and ∆ are
persistence-preserving equivalent (p-equivalent) under a se-
quence η = h0 h1 · · · of bijections, written τ1 ≍p

η τ2, if:
1. for every i ≥ 0, we have τ1(i) ∼hi

τ2(i);
2. for every i > 0, the restriction hi+1|adom(τ1(i)) of hi+1

to adom(τ1(i)) coincides with hi|adom(τ1(i)). ◁

We write τ1 ≍p τ2 if τ1 and τ2 are p-equivalent under some
sequence of bijections. It is immediate to see that ≍p is an
equivalence relation.

P-equivalence preserves the identity of an object across ad-
jacent states only if that object is present in both of them.
This implies that those objects that persist along a sequence of
pairwise adjacent states also preserve their identity through-
out that sequence. At the same time, p-equivalence allows
us to single out objects in the current active domain that may
disappear in the next one, as well as objects that appear in
the next active domain but are not present in the current one.

However, p-equivalence cannot distinguish an object that is
not present in the current state and appears in the next one
from any other object exhibiting the same pattern.

This leads to an interesting property of p-equivalence,
namely that it cannot distinguish between globally and lo-
cally fresh objects, in the sense formalized next. Let the his-
torical active domain at position i of τ , denoted hadomτ (i),
be the set hadomτ (i) =

⋃
j∈{0,...,i} adom(τ(j)) of ob-

jects that have been active in some interpretation at position
j ≤ i. The set of globally fresh objects at position i of τ is
∆ \ hadomτ (i). The set of locally fresh objects at position i
of τ is ∆ \ adom(τ(i)). While a locally fresh object at po-
sition i might have occurred in some position j < i − 1, this
cannot be the case for globally fresh objects. The following
remark, a direct consequence of Definition 13, shows that ≍p

does not distinguish global and local freshness. Hence, past
active objects that have been forgotten can be “recycled” and
used as if globally fresh.

Remark 14 Consider two finite traces τ1 and τ2 of length n
and such that τ1 ≍p

η τ2. Let τ ′1 and τ ′2 be the extensions of
such traces with one further interpretation each. If there is a
bijection h s.t.: (i) τ ′1(n) ∼h τ ′2(n); (ii) h(o) = η(n−1)(o)
for o ∈ adom(τ ′1(n−1)), and h(o) ∈ ∆ \ adom(τ ′2(n−1))
for o ∈ ∆ \ hadomτ ′

1
(n−1), then τ ′1 ≍p

ηh τ
′
2. ◁

Example 15 Consider the following traces:

τ1 = τ2 = {P (o1), P (o2)} {P (o1), Q(o2)} {R(o1)}.

Let τ ′1 be the extension of τ1 with {P (o3)}, and τ ′2 the ex-
tension of τ2 with {P (o2)}. Since τ ′1 and τ ′2 match but in the
last position, o3 is globally fresh at position 2 of τ1, and o2 is
locally fresh at position 2 of τ2, by Remark 14, τ ′1 ≍p τ ′2. ◁

We now connect the notion of p-equivalence to the no-
tion of persistence-preserving bisimulation (p-bisimulation)
studied by Bagheri Hariri et al. [2013b] and Calvanese et
al. [2018]. This will in turn prove essential when studying
p-equivalence of traces induced by RTSs.

Definition 16 (Calvanese et al. 2018) Let T1 =
⟨∆1, S1, s10,→1, I1⟩ and T2 = ⟨∆2, S2, s20,→2, I2⟩
be two RTSs over the same vocabulary, and let H be the
set of all possible bijections h : D1 7→ D2, for all possible
D1 ⊆ ∆1 and D2 ⊆ ∆2. A relation R ⊆ S1 ×H × S2 is a
p-bisimulation between T1 and T2, if ⟨s1, h, s2⟩ ∈ R implies
that:

1. Ĩ1(s1) ∼h Ĩ2(s2);
2. for each s′1 ∈ S1, if s1 →1 s

′
1, there exists s′2 ∈ S2 s..t.:

(a) s2 →2 s
′
2, and

(b) there exists a bijection h′ : adom(I1(s1)) ∪
adom(I1(s′1)) 7→ adom(I2(s2)) ∪ adom(I2(s′2))
s.t its restriction h′|adom(I1(s1)) coincides with
h|adom(I1(s1)) and ⟨s′1, h′|adom(I1(s′1))

, s′2⟩ ∈ R;
3. for each s′2 ∈ S2, if s2 →2 s

′
2, there exists s′1 ∈ S1 s.t.:

(a) s1 →1 s
′
1, and

(b) there exists a bijection h′ : adom(I1(s1)) ∪
adom(I1(s′1)) 7→ adom(I2(s2)) ∪ adom(I2(s′2))
s.t its restriction h′|adom(I1(s1)) coincides with
h|adom(I1(s1)) and ⟨s′1, h′|adom(I1(s′1))

, s′2⟩ ∈ R. ◁



A state s1 ∈ S1 is p-bisimilar to s2 ∈ S2, written s1 ≈p s2,
if there exists a p-bisimulation R between T1 and T2 such
that ⟨s1, h, s2⟩ ∈ R, for some h; when needed, we also write
s1 ≈p

h s2, to explicitly name h. Finally, T1 and T2 are p-
bisimilar, written T1 ≈p T2, if s10 ≈p s20. P-bisimilarity is
obviously an equivalence relation.

We are now ready to relate p-equivalence to p-bisimilarity
and to the LTL-FOp logic.

Lemma 17 Let T1 and T2 be two RTSs s.t. T1 ≈p T2. Then,
for every maximal trace τ1 of T1 there exists a maximal trace
τ2 of T2 s.t. τ1 ≍p τ2.

Theorem 18 Let τ1 and τ2 be traces s.t. τ1 ≍p τ2. Then, for
every LTL-FOp formula φ, we have τ1 |= φ iff τ2 |= φ.

By Theorem 18 and Remark 14 we get that LTL-FOp cannot
capture global freshness, and by combining Lemma 17 with
Theorem 18, we obtain the following key result.

Theorem 19 Let T1 and T2 be two RTSs s.t T1 ≈p T2. Then,
for every LTL-FOp formula φ, we have T1 |= φ iff T2 |= φ.

4.3 Decidability
We are now ready to address decidability of model checking.
Using Theorem 19, we can import in our setting the data ab-
straction techniques studied by Bagheri Hariri et al. [2013a]
and De Giacomo et al. [2016] for state-bounded, generic
RTSs. For such systems, it is shown that for every RTS T
there exists a p-bisimilar, finite-state T ′, referred to as an ab-
straction of T . Interestingly, T ′ can be obtained by recycling,
as much as possible, locally fresh objects whenever fresh ones
are needed; the bound on the active domain of each state guar-
antees that boundedly many old objects are enough to ensure
that no further globally fresh objects are needed, in turn guar-
anteeing that the resulting abstraction RTS is finite-state.

Theorem 20 (De Giacomo et al. 2016) For every generic
and state-bounded RTS T = ⟨∆, S, s0,→, I⟩ over a vo-
cabulary σ, there exists a finite-state and state-bounded RTS
T ′ = ⟨∆′, S′, s′0,→′, I ′⟩ over σ with finite ∆′, s.t. T ≈p T ′.

Observe that since the abstract RTS T ′ of Theorem 20 is
finite-state and state-bounded, T ′ is essentially a transition
system with propositional labeling. While it can be shown
that checking whether T ′ |= φ, for φ an LTL-FOp formula,
is decidable, this does not imply decidability of T |= φ, as
Theorem 20 does not state effective computability of T ′. To
obtain such a desirable result, we need to take advantage of
the (logical) representation of T , in our case as a BAT. Specif-
ically, let D be the BAT used, together with the infinite object
domain ∆, to specify T . De Giacomo et al. [2016] show that,
in order to achieve decidability, it is enough to replace the in-
finite object domain ∆ with a suitable finite subset ∆′ ⊂ ∆
and then use this and the BAT D to specify T ′. Under this
condition, one can effectively compute the desired T ′, thus
obtaining decidability of model checking.

Theorem 21 (De Giacomo et al. 2016) Let D be a BAT
bounded by b with complete initial situation description, M
its model (unique, up to object renaming) for an infinite object
domain ∆, and TM the corresponding induced RTS. More-
over, let n be the maximal number of parameters occurring

in the action types of D. Then, for any possibly finite ∆′

s.t. |∆′| ≥ 2b+ n+ |C|, one can effectively compute a finite-
state RTS T ′ s.t. TM ≈p T ′.

Intuitively, the construction of T ′ consists in constructing a
finite fragment of M , starting from the initial situation and
expanding all situations currently in the fragment by apply-
ing all executable actions. State-finiteness is obtained by in-
cluding a new situation only if the corresponding interpreta-
tion does not match any other of some situation already in
the fragment. By finiteness of ∆′ and boundedness of D,
the procedure terminates, as there exist only finitely many
distinct interpretations. T ′ is then easily obtained from the
constructed fragment. An analogous result can be obtained
with some care, also for BATs with incomplete initial situa-
tion description [De Giacomo et al., 2016]. This leads to the
following main result, which, we stress once again, holds for
every logical formalism other than the situation calculus, as
long as it guarantees genericity of the modeled RTS.
Theorem 22 Model checking LTL-FOp formulae over state-
bounded, generic RTSs specified by BATs is decidable.

5 Monitoring
Monitoring amounts to verifying whether the ongoing ex-
ecution of an unknown dynamic system satisfies a prop-
erty of interest, considering also its possible future contin-
uations [Bauer et al., 2010; Ly et al., 2015]. A 4-valued
semantics, called RV-LTL, has been introduced by Bauer et
al. [2010], recast by De Giacomo et al. [2014] over finite
traces, and employed by De Giacomo et al. [2020] for re-
inforcement learning.

We lift RV-LTL to our FO setting. The current (finite) ex-
ecution is modeled as a finite trace τ . For simplicity, we
consider as possible execution continuations only finite, un-
bounded extensions of τ , but our results hold also for infi-
nite extensions. Let RV = {CS, PS, CV, PV} be the set of 4
RV-LTL states, with the following meaning: (i) CS (current
satisfaction): (formula) satisfied now but violable in some
future; (ii) PS (permanent satisfaction): satisfied now and in
all futures; (iii) CV (current violation): violated now but sat-
isfiable in some future; and (iv) PV (permanent violation):
violated now and in all futures. This is formalized below.
Definition 23 Given a finite trace τ , an LTL-FO formula φ
over σ, and an interpretation domain ∆, we say that φ is in
monitoring state s ∈ RV after τ , written τ |= Jφ = sK, if:

• s = CS, τ |= φ, and ττ ′ ̸|= φ, for some finite trace τ ′;
• s = PS, τ |= φ, and ττ ′ |= φ, for every finite trace τ ′;
• s = CV, τ ̸|= φ, and ττ ′ |= φ for some finite trace τ ′;
• s = PV, τ ̸|= φ, and ττ ′ ̸|= φ for every finite trace τ ′. ◁

It is immediate to see that, for a finite trace τ and an
LTL-FO formula φ, there exists exactly one s ∈ RV such
that τ |= Jφ = sK. LTL-FO monitoring consists in computing
the monitoring state s ∈ RV s.t. τ |= Jφ = sK.

By Definition 23 it follows that monitoring is at least as
hard as LTL-FO satisfiability and validity. To see this, it is
enough to apply Definition 23 when τ is the empty trace. As
a consequence, we can obtain for monitoring a strong unde-
cidability result analogous to Theorem 11. To this end, we



first need to adapt to traces the notion of state-boundedness
for RTSs (Definition 3).
Definition 24 A trace τ is (state-)bounded by b ∈ N if
|adom(τ(i))| ≤ b, for 0 ≤ i < |τ |. We say that τ is
(state-)bounded if it is bounded by b for some b. ◁

Theorem 25 LTL-FOa monitoring over 1-bounded traces is
undecidable.

Again, however, analogously to the case of model checking,
we obtain decidability for state-bounded traces and LTL-FOp.
Theorem 26 LTL-FOp monitoring over state-bounded traces
is decidable.

Proof (Sketch) Consider a finite trace τ bounded by b and an
LTL-FOp formula φ. The proof consists in characterizing the
RV-LTL states through two verification problems on φ or ¬φ,
based on the state under consideration. Checking whether
τ |= φ or τ |= ¬φ can be done via LTL-FOp model check-
ing, by replacing τ with a trivial generic state-bounded RTS
with τ as unique trace, which is decidable by Theorem 22.
For the extensions of τ , we define a BAT D state-bounded by
b, with a unique model M s.t. the sequence of interpretations
assigned by M to each path in the tree of executable situa-
tions corresponds either to a prefix or a possible b-bounded
extension of τ , over the given vocabulary σ. We then check
whether D |= φfin ⊃ φ, using φfin to restrict to finite ex-
tensions (recall that φfin expresses trace finiteness), which is
decidable by Theorem 22. □

Example 27 Consider formula φp1 from Example 8, and the
following formula φp2 expressing that at some point in the
trace, there must be a live object x for which P (x) holds and
then, as long as x persists, S(x) should never hold:

φp2 = F(∃x.(LIVE(x) ∧ P (x)∧
(LIVE(x) ∧ ¬S(x))U¬LIVE(x))).

The table below shows the result of the monitoring of φp1 and
φp2 for the following trace:

φp1

φp2

{
P (a)

} {
P (a),
S(a)

}{
P (a),
Q(a, b)

} {
P (b)

} {
P (b)

} {
S(c)

}
CS CV CS CV PV

CV PS
◁

Bounded traces are not only induced by state-bounded sys-
tems, but naturally arise also in the context of Process Min-
ing (PM) [van der Aalst, 2016]. An integral part of PM
deals with operational support for running operational pro-
cesses instantiated on case objects, such as orders, packages,
or claims. Such objects spawn executions, producing traces
whose positions contain logged events, which are essentially
tuples of instantiated attributes. Since each position in a
case trace contains exactly one logged event, every trace is
state-bounded by the maximum number of attributes of the
events occurring therein. Hence, by Theorem 26, LTL-FOp

can be effectively used to monitor operational processes,
a main task in operational support [van der Aalst, 2016;
Ly et al., 2015]. We can also extend the application of our

technique in this setting by considering a bounded set of
related cases, using LTL-FOp to express so-called instance
spanning constraints [Fdhila et al., 2016].

6 Conclusions
We have addressed the problem of verification of FO exten-
sions of temporal logics in the linear-time setting, for both
infinite and finite traces, left almost unexplored by previous
work, which focused mainly on branching-time. We have
shown that, for generic and state-bounded RTSs, verification
of LTL-FOp is decidable, whereas undecidable for LTL-FOa.
The latter contrasts with a previous result for branching-time,
which states that restricting quantification to the active do-
main yields decidability. To obtain our results, we have iso-
lated the undecidability source for the most expressive logic
LTL-FO, a point left unclear so far, and then have investigated
the increasingly stricter fragments LTL-FOa and LTL-FOp.
While our work focuses on RTSs specified as situation cal-
culus basic action theories, the obtained results seamlessly
apply to all formalisms that induce generic RTSs.

The decidability result opens the way to monitoring for
LTL-FOp, a problem of practical interest naturally arising in
Process Mining, which consists in checking whether the on-
going execution of an unknown system currently satisfies an
LTL-FOp formula and/or will do in the future, as the execution
carries on. We have recasted the problem in our setting and
shown its decidability under state-boundedness.

As future work, we intend to develop automata-based tech-
niques for verification and monitoring of LTL-FOp. To this
end, thanks to the abstraction techniques exploited here, we
can directly import algorithmic approaches based on FO ex-
tensions of LTL interpreted over fixed, finite domains, such as
in [Baier and McIlraith, 2006; De Masellis and Su, 2013].
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