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Abstract
Synthesis techniques for temporal logic specifica-
tions are typically based on exploiting symbolic
techniques, as done in model checking. These sym-
bolic techniques typically use backward fixpoint
computation. Planning, which can be seen as a spe-
cific form of synthesis, is a witness of the success
of forward search approaches. In this paper, we
develop a forward-search approach to full-fledged
Linear Temporal Logic on finite traces (LTLf ) syn-
thesis. We show how to compute the Determin-
istic Finite Automaton (DFA) of an LTLf formula
on-the-fly, while performing an adversarial forward
search towards the final states, by considering the
DFA as a sort of AND-OR graph. Our approach
is characterized by branching on suitable proposi-
tional formulas, instead of individual evaluations,
hence radically reducing the branching factor of the
search space. Specifically, we take advantage of
techniques developed for knowledge compilation,
such as Sentential Decision Diagrams (SDDs), to
implement the approach efficiently.

1 Introduction
Program synthesis aims at automatically generating a pro-
gram from declarative specifications expressed in temporal
logic [Pnueli and Rosner, 1989; Ehlers et al., 2017]. A com-
monly used logic for program synthesis is Linear Temporal
Logic (LTL), typically used also in model checking [Baier
and Katoen, 2008]. Recently, synthesis has been investigated
for specifications expressed in LTLf , a finite-trace variant of
LTL [De Giacomo and Vardi, 2013]. Roughly speaking, we
consider an alphabet of propositions partitioned into those
controlled by the agent (one may think of these as a binary
encoding of agent actions) and those controlled by the envi-
ronment (one may think of these as fluents), and then we use
LTLf to specify which finite traces are desirable. The out-
come of the synthesis procedure is a program (a finite-state
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controller) that at every time step, given the values of the
environment propositions in the history so far, sets the next
value of the agent propositions so that the traces generated
satisfy the LTLf specification [De Giacomo and Vardi, 2015].

LTLf synthesis has been proven to be one of the most suc-
cessful synthesis settings so far. Several tools have been de-
veloped recently, among which Lisa [Bansal et al., 2020] and
Lydia [De Giacomo and Favorito, 2021] are possibly the best
performing ones to date. Both these tools are based on first
constructing a DFA corresponding to the LTLf specification,
and then considering it as a game arena where the agent tries
to get to an accepting state in spite that the environment tries
to avoid it. A winning strategy, which is a finite controller
returned by the synthesis procedure, can be obtained through
a backward fixpoint computation for adversarial reachability
of the DFA accepting states [De Giacomo and Vardi, 2015].
The main difficulty of this approach is that it requires com-
puting the entire DFA of the LTLf specification, which can be,
in the worst case, doubly exponential in the size of the speci-
fication [De Giacomo and Vardi, 2015]. Hence, even though
the backward fixpoint computation can be performed sym-
bolically, enabling scalable performance [Zhu et al., 2017],
the DFA construction step can become a significant bottle-
neck [Zhu et al., 2019].

An alternative approach is to expand the arena while
searching for the accepting states via forward search [Xiao
et al., 2021], which is analogous to the approach taken by
most work in adversarial Planning with fully observable non-
deterministic domains (FOND), where the agent controls
the actions and the environment controls the fluents [Ghal-
lab et al., 2004; Geffner and Bonet, 2013]. The agent
has to reach the goal, despite that the environment may
choose adversarially the effects of the agent actions (strong
plans in FOND) [Cimatti et al., 1998; Cimatti et al., 2003;
Geffner and Bonet, 2013]. The typical way to deal with this
kind of planning is through forward search on an AND-OR
graph [Nilsson, 1971], where the OR-nodes correspond to the
choices (quantified existentially) of the agent and the AND-
nodes correspond to the choices (quantified universally) of
the environment [Mattmüller et al., 2010; Mattmüller, 2013;
Geffner and Bonet, 2013]. Note that the search space gen-
erated for FOND planning with a compactly represented do-
main, say, in PDDL [Haslum et al., 2019], is at most single-
exponential [Rintanen, 2004].



Instead, to handle LTLf synthesis, we need to deal with a
state space that can be of double-exponential size. Search-
ing over a double-exponential state space has been stud-
ied in Planning in partially observable nondeterministic do-
mains (POND), aka contingent planning, where the search
procedure must be performed over the belief-states [Reif,
1984; Goldman and Boddy, 1996; Bertoli et al., 2006;
Geffner and Bonet, 2013]. However, belief-states have a spe-
cific structure [Bertoli et al., 2006; Thanh To et al., 2009], the
techniques utilized in contingent planning cannot be directly
applied to LTLf synthesis.

In this work, we investigate LTLf forward synthesis
adopting an AND-OR graph search as in FOND Plan-
ning [Mattmüller et al., 2010; Mattmüller, 2013], but over
a doubly exponential search space, as for contingent plan-
ning [Bertoli et al., 2006]. We do not rely on an encoding into
PDDL, as [Camacho et al., 2018; Camacho and A. McIlraith,
2019], which may result into a PDDL specification with ex-
ponential size. Instead, we develop specific techniques to cre-
ate the search space on-the-fly while exploring it, such that we
can possibly decide realizability/unrealizability before reach-
ing the worst-case double-exponential blowup.

In details, we propose a technique to create on-the-fly the
DFA corresponding to the LTLf specification. This technique
avoids a detour to automata theory and instead builds directly
deterministic transitions from a current state. In particular,
this technique exploits LTL formula progression [Emerson,
1990; Bacchus and Kabanza, 1998] to separate what happens
now (label) and what should happen next accordingly (suc-
cessor state). Crucially, we exploit the structure that for-
mula progression provides to branch on propositional formu-
las (representing several evaluations), instead of individual
evaluations. This drastically reduces the branching factor of
the AND-OR graph to be searched (recall that in LTLf syn-
thesis, both the agent choices and the environment choices
can be exponentially many). More specifically, we label
transitions/edges with propositional formulas on propositions
controlled by the agent (for OR-nodes) and by the environ-
ment (for AND-nodes). Every such propositional formula
captures a set of evaluations leading to the same successor
node. We leverage Knowledge Compilation (KC) techniques,
and in particular Sentential Decision Diagrams (SDDs) [Dar-
wiche, 2011], to effectively generate such propositional for-
mulas for OR-nodes and AND-nodes, and thus reduce the
branching factor of the search space. We implemented our ap-
proach in a tool called Cynthia and conducted comprehensive
experiments by comparing to existing LTLf synthesis tools,
including Lisa, Lydia and Ltlfsyn from [Xiao et al., 2021] and
demonstrate the merits of our approach.

2 Preliminaries
LTLf Basics. Linear Temporal Logic over finite traces, called
LTLf [De Giacomo and Vardi, 2013] is a variant of Linear
Temporal Logic (LTL) [Pnueli, 1977] that is interpreted over
finite traces rather than infinite traces (as in LTL). Given a
set of propositions P , the syntax of LTLf is identical to LTL,
and defined as (wlog, we require LTLf formulas are in Nega-
tion Normal Form (NNF), i.e., negations only occur in front

of atomic propositions): ϕ ::= tt | ff | p | ¬p | ϕ1 ∧ ϕ2 |
ϕ1 ∨ ϕ2 | ◦ϕ | •ϕ | ϕ1 U ϕ2 | ϕ1Rϕ2. tt is always true, ff
is always false; p ∈ P is an atom, and ¬p is a negated atom
(a literal l is an atom or the negation of an atom); ∧ (And)
and ∨ (Or) are the Booelean connectives; and ◦ (Next),
• (Weak Next), U (Until) andR (Release) are temporal con-
nectives. We use the usual abbreviations true ≡ p ∨ ¬p,
false ≡ p ∧ ¬p, ♦ϕ ≡ true U ϕ and �ϕ ≡ falseRϕ. Also
for convenience we consider traces ρ ∈ (2P)∗, i.e., we con-
sider also empty traces ε as in [Brafman et al., 2018]. More
specifically, a trace ρ = ρ[0], ρ[1], . . . ∈ (2P)∗ is a finite
sequence, where ρ[i] (0 ≤ i < |ρ|) denotes the i-th inter-
pretation of ρ, which can be considered as the set of propo-
sitions that are true at instant i, and |ρ| represents the length
of ρ. We have that ε |= ϕ if ϕ is tt , an R-formula or •-
formula, hence ε |= �false. ε 6|= ϕ if ϕ is ff , a literal,
U-formula or ◦-formula, hence ε 6|= ♦true . Detailed seman-
tics of LTLf can be found in [De Giacomo and Vardi, 2013;
Brafman et al., 2018].

We denote by cl(ϕ) the set of subformulas of ϕ, including
tt and ff . We denote by pa(ϕ) ⊆ cl(ϕ) the set of literals
and temporal subformulas of ϕ whose primary connective is
temporal [Li et al., 2019]. Formally, for an LTLf formula ϕ
in NNF, we have pa(ϕ) = {ϕ} if ϕ is a literal or temporal
formula; and pa(ϕ) = pa(ϕ1) ∪ pa(ϕ2) if ϕ = (ϕ1 ∧ ϕ2) or
ϕ = (ϕ1 ∨ ϕ2).

Having LTLf formula ϕ, replacing every temporal formula
ψ ∈ pa(ϕ) with a propositional variable aψ gives us a propo-
sitional formula ϕp. As a consequence, two formulas ϕ1 and
ϕ2 are propositionally equivalent, denoted by ϕ1 ∼p ϕ2, if,
C |= ϕp1 ↔ C |= ϕp2 holds for every propositional assign-
ment C ∈ 2pa(ϕ1)∪pa(ϕ2). The equivalence class of a formula
ψ ∈ cl(ϕ) is denoted by [ψ]∼p

and defined as [ψ]∼p
= {y ∈

cl(ϕ) | ψ∼py}. The quotient set of a subset C ⊆ cl(ϕ) is
denoted by C/∼p

and defined as C/∼p
= {[ψ]∼p

| ψ ∈ C}.

Definition 1. An LTLf formula ϕ is in neXt Normal
Form (XNF) if pa(ϕ) only includes literals, ◦- and •-
formulas.

For an LTLf formula ϕ in NNF, we can obtain its XNF by
transformation function xnf(ϕ), defined as follows:
- xnf(ϕ) = ϕ if ϕ is a literal, �false, ♦true, ◦-, •-formula;
- xnf(ϕ1 ∧ ϕ2) = xnf(ϕ1) ∧ xnf(ϕ2);
- xnf(ϕ1 ∨ ϕ2) = xnf(ϕ1) ∨ xnf(ϕ2);
- xnf(ϕ1Uϕ2)=(xnf(ϕ2)∧♦true)∨(xnf(ϕ1)∧◦(ϕ1Uϕ2));
- xnf(ϕ1Rϕ2)=(xnf(ϕ2)∨�false)∧(xnf(ϕ1)∨•(ϕ1Rϕ2)).

Note that ♦true (resp. �false) guarantees that empty trace
is not (resp. is) accepted by U-formulas (resp.R-formulas).

Theorem 1 ([Li et al., 2019]). Every LTLf formula ϕ in NNF
can be converted, with linear time in the formula size, to an
equivalent formula in XNF, denoted by xnf(ϕ).

LTLf Synthesis. The problem of LTLf synthesis is described
as a tuple (ϕ,X ,Y), where ϕ is an LTLf formula over X ∪
Y , and X ,Y are two disjoint sets of variables controlled by
the environment and the agent, respectively. Sometimes, for
simplicity, we do not mention X and Y explicitly, if they are
clear from the context.



Definition 2. The synthesis problem (ϕ,X ,Y) aims to com-
puting a strategy g : (2X )∗ → 2Y , such that for an arbi-
trary infinite sequence λ = X0, X1, . . . ∈ (2X )ω , we can find
k ≥ 0 such that ρk |= ϕ, where ρk = (X0 ∪ g(ε)), (X1 ∪
g(X0)), . . . , (Xk∪g(X0, X1, . . . , Xk−1)). If such a strategy
does not exist, then ϕ is unrealizable.

LTLf synthesis can be solved by reducing to an adversarial
reachability game on the corresponding Deterministic Finite
Automaton (DFA) [De Giacomo and Vardi, 2015]. Hence,
a strategy can also be represented as a finite-state controller
g : S 7→ 2Y , where S denotes the state space of the DFA.
Sentential Decision Diagrams (SDDs). SDDs [Darwiche,
2011] is a Knowledge Compilation (KC) technique designed
for an efficient representation and manipulation of Boolean
functions. In order to represent a Boolean function, the clas-
sical method is applying Shannon decomposition, as done in
Ordered Binary Decision Diagrams (BDDs) [Bryant, 1992].
Intuitively, BDD decomposes Boolean functions with one
variable at a time. Therefore, the canonicity of BDD is de-
termined wrt a specific ordering of variables. SDD, instead,
utilizes a more general decomposition technique that decom-
poses Boolean functions with a set of variables at each round.
Let f(Y ∪ X ) be a Boolean function over variables Y ∪ X ,
where Y,X are disjoint. Given an (Y,X )-partition, where Y
variables are considered primary and X variables are consid-
ered subsequent, the SDD of f , with respect to the (Y,X )-
partition, can be written as

∨n
i=1[primei(Y) ∧ subi(X )]. In-

tuitively, SDD decomposes f into n children, each of which
consists of Boolean functions primei(Y) (what are satisfied
in primary) and subi(X ) (what should be satisfied in subse-
quent, according to primei(Y)). In particular, besides that all
the primes are disjoint and covering, i.e., primei ∧ primej =

false for i 6= j, and
∨n
i=1 primei = true, SDD also guar-

antees that all the subs are compressed, i.e., subi(X ) 6=
subj(X ) for i 6= j. Hence, the canonicity of SDDs is de-
termined wrt a specific partition of variables.

3 DFA Construction from LTLf

The classical approach to LTLf synthesis first constructs the
complete DFA, and then solves an adversarial reachabil-
ity game through a backward fixpoint computation on this
DFA [De Giacomo and Vardi, 2015]. An alternative approach
presented in [Xiao et al., 2021] is an on-the-fly synthesis tech-
nique that is able to construct the automaton while solving the
game in a forward way. Yet, the game arena generated there is
explicit, s.t. during search, there can be an exponential num-
ber of options to explore at every state, leading to a major
drawback for scalability. We now present a new DFA con-
struction based on an incremental technique called formula
progression that is suitable for exploiting SDDs.
LTLf Formula Progression. Consider an LTLf formula ϕ
over P and a finite trace ρ = ρ[0], ρ[1], . . . ∈ (2P)∗, in
order to have ρ |= ϕ, we can start from ϕ, progress or
push ϕ through ρ. The idea behind formula progression is
to consider LTLf formula ϕ into a requirement about now
ρ[i], which can be checked straightaway, and a requirement
about the future that has to hold on the yet unavailable suffix.
That is to say, formula progression looks at ρ[i] and ϕ, and

progresses a new formula fp(ϕ, ρ[i]) such that ρ, i |= ϕ iff
ρ, i + 1 |= fp(ϕ, ρ[i]). This procedure is analogous to DFA
reading trace ρ, where reaching accepting states is essentially
achieved by taking one transition after another. Formula pro-
gression has been studied in prior work, cf. [Emerson, 1990;
Bacchus and Kabanza, 1998]. Here we use it for constructing
DFA from LTLf formulas.

Note that, since ρ is a finite trace, it is necessary to clarify
when the trace ends. To do so, we introduce two new formu-
las �false and ♦true , which, intuitively, refer to finite trace
ends and finite trace not ends, respectively. For simplicity,
we enrich cl(ϕ), the set of proper subformulas of ϕ, to in-
clude them such that cl(ϕ) is reloaded as cl(ϕ)∪ cl(♦true)∪
cl(�false).
Definition 3 (LTLf Formula Progression). For an LTLf for-
mula ϕ in NNF, the progression function fp(ϕ, σ), where
σ ∈ 2P , is defined as follows:
- fp(tt , σ) = tt and fp(ff , σ) = ff ;
- fp(p, σ) = tt if p ∈ σ, otherwise ff ;
- fp(¬p, σ) = tt if p /∈ σ, otherwise ff ;
- fp(ϕ1 ∧ ϕ2, σ) = fp(ϕ1, σ) ∧ fp(ϕ2, σ);
- fp(ϕ1 ∨ ϕ2, σ) = fp(ϕ1, σ) ∨ fp(ϕ2, σ);
- fp(◦ϕ, σ) = ϕ ∧ ♦true;
- fp(•ϕ, σ) = ϕ ∨�false;
- fp(ϕ1Uϕ2, σ)= fp(ϕ2, σ)∨(fp(ϕ1, σ)∧fp(◦(ϕ1Uϕ2), σ));
- fp(ϕ1Rϕ2, σ)= fp(ϕ2, σ)∧(fp(ϕ1, σ)∨fp(•(ϕ1Rϕ2), σ)).

Note that fp(ϕ, σ) is a positive Boolean formula on cl(ϕ),
i.e., fp(ϕ, σ)∈B+(cl(ϕ)).

The following two lemmas show that fp(ϕ, σ) strictly fol-
lows LTLf semantics and retains the propositional behavior
of LTLf formulas.
Lemma 1. Let ϕ be an LTLf formula over P in NNF, ρ be
a finite nonempty trace, fp(ϕ, σ) be as above. We have that
ρ, i |= ϕ iff ρ, i+ 1 |= fp(ϕ, ρ[i]).
Lemma 2. Let ϕ and ψ be two LTLf formulas over P in NNF

s.t. ϕ ∼p ψ, and σ ∈ 2P . Then fp(ϕ, σ) ∼p fp(ψ, σ) holds.
We generalize LTLf formula progression from single in-

stants to finite traces by defining fp(ϕ, ε) = ϕ, and
fp(ϕ, σu) = fp(fp(ϕ, σ), u), where σ ∈ 2P and u ∈ (2P)∗.
Lemma 3. Let ϕ be an LTLf formula over P in NNF, ρ be a
finite trace. We have that ρ |= ϕ iff ε |= fp(ϕ, ρ).

Given an LTLf formula ϕ, we can consider it as the ini-
tial state, and recursively apply formula progression to ob-
tain all reachable states (through deterministic transitions),
denoted by Reach(ϕ) = {fp(ϕ, ρ) | ρ ∈ (2P)∗}. Note
that once applying propositional equivalence, there can only
be 22

|cl(ϕ)|
elements in Reach(ϕ)/∼p . Lemma 3 shows that

a state ψ ∈ Reach(ϕ)/∼p can be recognized as accepting
iff ε |= ψ, indicating that there exists a trace ρ such that
ψ = fp(ϕ, ρ) and ρ is completely “consumed” by formula
progression, returning a formula, corresponding to an accept-
ing state, that holds on the empty trace ε. In particular, given
that every state ψ is actually a positive Boolean formula on
cl(ϕ), checking ε |= ψ only requires dealing with Boolean
operators of disjunction and conjunction, which can be done
in linear time. The correctness and complexity of our DFA
construction are stated below.



Theorem 2. Given LTLf formula ϕ, the following DFA rec-
ognizes L(ϕ): A = (2P , S, s0, δ, Acc), where the states
S = Reach(ϕ)/∼p

, the initial state s0 = ϕ∼p
, the transi-

tion function δ([ψ]∼p
, σ) = fp([ψ]∼p

, σ),∀σ ∈ 2P and the
accepting states Acc = {ψ | ε |= ψ}.
Theorem 3. Let ϕ be an LTLf formula, the constructed DFA
A can have, in the worst case, 22

|cl(ϕ)|
states.

4 LTLf Synthesis as AND-OR Graph Search
Recall that LTLf synthesis can be viewed as an adversarial
reachability game on the DFA of the given formula. Interest-
ingly, this game can actually be considered as an AND-OR
graph, where the OR-nodes indicate the agent actions (quan-
tified existentially), and the AND-nodes indicate the envi-
ronment responses (quantified universally). In this case, the
DFA construction approach described in the previous sec-
tion allows us to solve LTLf synthesis via on-the-fly AND-
OR graph search. Now, we present our approach of solving
LTLf synthesis via on-the-fly AND-OR graph search, and ex-
plain how to leverage KC techniques, Sentential Decision Di-
agrams (SDDs) [Darwiche, 2011] to significantly reduce the
branching factor of the constructed graph.

4.1 Synthesis Algorithm
Given problem (ϕ,X ,Y), our synthesis algorithm searches
for a strategy by exploring the constructed AND-OR graph on
the fly. This algorithm is basically a top-down traversal of the
search space, proceeding forward from the initial, and exclud-
ing strategies that lead to loops. Since we apply the crucial
step of propositional equivalence check whenever computing
a new state, for simplicity, we omit the propositional equiv-
alence symbol ∼p and denote every newly constructed DFA
state by ψ, instead of [ψ]∼p , e.g., the initial state is denoted by
ϕ, instead of [ϕ]∼p

. Every DFA state is stored as an OR-node,
each outgoing transition (or-arc) leads to an AND-node. Ev-
ery or-arc is stored as an action-AndNode pair (act,AndNd).
Every outgoing transition (and-arc) of an AND-node is stored
as a response-OrNode pair (resp, n). A strategy is stored
as a set of state-action pairs. If ϕ is unrealizable, we obtain
strategy as an empty set. In order to avoid exploring the same
state over and over, we assign a tag to its associated OR-node
n after exploring it. More specifically, n is tagged as success
if the corresponding DFA state ψ is accepting or there exists
an act such that, regardless of what the environment resp is,
all corresponding followup OR-nodes are already tagged as
success. In this case, we also add state-action pair (ψ, act)
to strategy. If such act does not exist, n is tagged as failure.
Moreover, we also put a loop tag on an OR-node n if a loop
is detected on n, which is considered as temporary failure.

As shown in Algorithm 1, the SYNTHESIS procedure takes
a given LTLf formula ϕ as input (X ,Y are omitted for sim-
plicity), and first checks whether the initial state ϕ is accept-
ing. If this is the case, state-action pair (ϕ, true) is added to
strategy and returned (Line 4). This is because the agent can
do whatever it wants (i.e., assign any value to its variables
Y) after reaching an accepting state. Otherwise, we initial-
ize the graph by creating an OR-node n out of ϕ, and start

Algorithm 1 SDD-based Forward Synthesis

1: function SYNTHESIS(ϕ) return strategy
2: if ISACCEPTING(ϕ) then
3: ADDTOSTRATEGY(ϕ, true)
4: return GETSTRATEGY()
5: INITIALGRAPH(ϕ)
6: n := GETGRAPHROOT()
7: found := SEARCH(n, ∅)
8: if found then return GETSTRATEGY()
9: return EMPTYSTRATEGY() . ϕ is unrealizable

10: function SEARCH(n, path) return True/False
11: if ISSUCCESSNODE(n) then return True

12: if ISFAILURENODE(n) then return False

13: if INPATH(n, path) then . We found a loop
14: TAGLOOP(n) return False

15: ψ :=FORMULAOFNODE(n)
16: if ISACCEPTING(ψ) then
17: TAGSUCCESSNODE(n)
18: ADDTOSTRATEGY(ψ, true)
19: return True
20: EXPAND (n) . Uses SDD to partition ψ wrt Y and X
21: for (act, AndNd) ∈GETORARCS(n) do
22: for (resp, succ) ∈GETANDARCS(AndNd) do
23: found :=SEARCH(succ, [path|n])
24: if ¬found then Break
25: if found then
26: TAGSUCCESSNODE(n)
27: ADDTOSTRATEGY(ψ, act)
28: if ISTAGLOOP(n) then
29: BACKPROP(n)
30: return True
31: TAGFAILURENODE(n)
32: return False

the main procedure SEARCH. The SEARCH procedure is a
recursive routine, taking an OR-node n and the path leading
to n as inputs, returning True (resp. False) indicating that a
strategy is (resp. isn’t) found by the current recursion. Hence,
if the outmost SEARCH returns True, a strategy consisting
of all state-action pairs added until then is returned (Line 8).
Otherwise, an empty strategy is returned.

SEARCH processes an OR-node n by first checking
whether n is tagged already, if so, it returns True for suc-
cess tag, and False for failure tag. Then, if n exists on path
thus leading to a loop, we put a loop tag on node n, and re-
turn False. Intuitively, when a loop is detected at node n, the
procedure returns False, temporally considering n as a failure
node. Note that we do not tag n as failure, since it is un-
known here whether all the or-arcs of n are explored. Indeed,
the returned False will be taken into account when tagging
the ancestor nodes of n. Therefore, when later n is tagged as
success, this information needs to be propagated back to the
ancestor nodes of n.

Later on, the procedure continues by checking whether the
associated DFA state ψ of n is accepting, if so, n is tagged as



Algorithm 2 Propagate Success Backwards

1: function BACKPROP(n)
2: N := ENQUEUE(EPQUEUE,
3: while !ISEMPTY(N ) do
4: np := DEQUEUE(N )
5: for (act, AndNd) ∈GETORARCS(np) do
6: if ALLCHILDRENSUCCESS(AndNd) then
7: TAGSUCCESSNODE(np)
8: ψ :=FORMULAOFNODE(np)
9: ADDTOSTRATEGY(ψ, act)

10: Ns :=ENQUEUE (N , FAILUREPNS(np))
11: Break

success, and (ψ, true) is added to the strategy. If none of these
checks succeeds, n is expanded by EXPAND, which con-
structs all its or-arcs (act,AndNd), and and-arcs (resp, succ)
of every AndNd. The crucial constraint is that all the agent
actions acts of OR-node n should be disjoint and covering,
the same with environment responses resp of every AndNd.
Indeed, EXPAND is based on SDDs, see Section 4.2. As
a side-effect, the EXPAND function stores the newly con-
structed nodes and arcs from n. We explore OR-node n,
by iteratively processing the list of AND-nodes AndNd con-
nected to n, until a strategy is found (Lines 21-32). In Line
23, we recursively call SEARCH with the by n extended path.
For every AndNd, once False is detected for searching some
succ, we give up on the current AndNd and proceed with the
next one (Line 24). If searching every succ of AndNd re-
turns True (Line 25), n is tagged as success, and the corre-
sponding state-action pair (ψ, act) is stored. Moreover, if n
carries a loop tag, it is easy to see that n has been tempo-
rally considered as a failure node, and this information has
been taken into account when tagging the ancestor nodes of
n. Therefore, it is necessary to propagate this success infor-
mation from n backwards to the ancestor nodes of n (Lines
28-29). If no strategy is found after exploring n, we tag it as
failure, and SEARCH returns False. It should be noted that, in
a forward search on an AND-OR graph, it is critical to han-
dle loops with the assistance of this backward propagation,
by BACKPROP, as illustrated in [Scutellà, 1990].

As shown in Algorithm 2, BACKPROP is basically a
bottom-up traversal of the subgraph rooted at n, that starts
from the leaves, and propagates success backwards. In par-
ticular, only the nodes that are tagged as failure must be con-
sidered. This is because once a node n is tagged as success,
it indicates that n is not affected by any temporary failure of
its children. We start from the direct parents of n, and put
them in a queue N . For every direct failure parent node np of
n, np can be tagged as success only if there exists an or-arc
(act, AndNd), such that all the followup OR-nodes are already
tagged as success. In this case, the corresponding state-action
pair (ψ, act) is stored. Moreover, the success information of
np should also be propagated, since np was tagged as failure,
which could have affected the tag information of the direct
parent nodes of np. Therefore, we add the failure nodes of
them to N . The propagation continues until N gets empty. It
is easy to see that the backward propagation does not change

Algorithm 3 SDD-based ExpandGraph from An OrNode

1: function EXPAND(n)
2: ψ :=FORMULAOFNODE(n)
3: T := SDDREPRESENTATION(xnf(ψ))
4: for child ∈ GETSDDCHILDREN(T ) do
5: act := GETSDDPRIME(child)
6: AndNd := GETSDDSUB(child)
7: ADDORARCS(n, act, AndNd)
8: for child ∈ GETSDDCHILDREN(AndNd) do
9: resp := GETSDDPRIME(child)

10: sub := GETSDDSUB(child)
11: succ := RMNEXT (sub)
12: ADDANDARCS(AndNd, resp, succ)

the forward nature of the SEARCH procedure, since the back-
ward propagation has to be considered only as an instrument
to correctly propagate the success whenever needed, i.e., in
the presence of loops.

A major challenge arises, however, when looking into the
branching factor of this AND-OR graph. Note that, in EX-
PAND, if we simply use Y ∈ 2Y as act for every OR-node
n, and X ∈ 2X as resp for every AndNd connected to n,
there can be far too many directions to explore, which leads
to crucial performance limitation. Another challenge comes
from the propositional equivalence check, which needs to be
performed whenever computing a new state. We now explain
how to use Sentential Decision Diagrams (SDDs) [Darwiche,
2011] to tackle both these challenges.

4.2 SDD-based EXPAND
The crucial reason of adopting SDDs in the implementation
of EXPAND (Algorithm 3), rather than other KC techniques,
e.g., BDDs, is that, while maintaining canonicity to check
propositional equivalence in constant time, SDDs can provide
a disjoint, covering and compressed partition of a Boolean
function, wrt a hierarchy of (Y,X )-partition. This allows
us to easily partition the transition labels into disjoint agent
moves and disjoint environment moves, compressed as much
as possible, and so labeling transitions symbolically by propo-
sitional formulas. Let ψ be the associated DFA state of n, the
input of EXPAND(n). The algorithm starts from computing
xnf(ψ), which is equivalent to ψ, and intuitively, encodes all
the possibilities of what happens now, expressed by Y ∪ X
variables, and what happens next accordingly, expressed by
variables Z =

⋃
θ∈cl(ϕ){zα|α ∈ pa(xnf(θ)), α not literal}.

Note that it is crucial to consider the closure of the original
LTLf formula ϕ, instead of the current state ψ, as the propo-
sitional equivalence check between two states requires their
SDDs to be defined over the same set of variables.

In Line 3, we represent xnf(ψ), considering it as a
propositional formula over pa(xnf(ψ)), into an SDD T :=∨n
i=1[primei(Y) ∧ subi(X ∪ Z)] such that all Y s leading

to the same set of possible successors subi(X ∪ Z) (X is
not decided yet) are clustered into a propositional formula
primei(Y). primei(Y) and subi(X ∪ Z) are extracted as act
and corresponding AndNd, respectively (Lines 5&6). More-
over, subi(X ∪ Z) =

∨m
j=1[primei,j(X ) ∧ subi,j(Z)] is



such that all Xs leading to the same successor are clustered
into formula primej(X ), and subi,j(Z) refers to the suc-
cessor state of agent-env choices (primei(Y), primei,j(X )).
They are extracted as resp and corresponding succ, respec-
tively (Lines 9-11). Note that SDDs guarantee that all dis-
juncts generated are disjoint, covering and compressed, hence
we can use SDDs to reduce the branching factor as much
as possible. In particular, every successor state succ is ob-
tained by stripping ◦ and •, introduced by XNF, through the
remove-next function RMNEXT, defined below:
- RMNEXT(♦true) = tt , RMNEXT(�false) = ff
- RMNEXT(ϕ1 ∧ ϕ2) = RMNEXT(ϕ1) ∧ RMNEXT(ϕ2)
- RMNEXT(ϕ1 ∨ ϕ2) = RMNEXT(ϕ1) ∨ RMNEXT(ϕ2)
- RMNEXT(◦ϕ) = ϕ∧♦true, RMNEXT(•ϕ) = ϕ∨�false

Note that RMNEXT applies to neither U-,R- formulas,
since they do not appear in XNF, nor literals (p, ¬p), since
its input is a propositional formula over variables Z that does
not contain literals.

Lemma 4. Algorithm 3 is correct, i.e., given an OR node n,
EXPAND correctly expands the search graph.

Proof. (Sketch) We prove the lemma by first showing that
the XNF of the LTLf formula ψ, associated to n, essentially
captures all the transitions that can be obtained by applying
formula progression on ψ. The SDD representation of xnf(ψ)
correctly provides a disjoint and covering partitions of all the
transitions. Hence, the SDD-based EXPAND is correct.

Theorem 4. Algorithm 1 terminates in at most double-
exponential time, in the size of ϕ of problem (ϕ,X ,Y).

Proof. (Sketch) This is guaranteed by the fact that the num-
ber of recursive calls in SEARCH is bounded by the worst-
case doubly-exponential number of states in the constructed
DFA via the SDD-based technique. Note that every recursive
call first checks for success, failure, and loop (Lines 11-19).
Then if the recursive call gets to Line 20, it will eventually
tag the current node as success or failure. Therefore, ev-
ery node is explored only once in a forward manner. Note
that if a success node n was also tagged loop, BACKPROP is
called before completing the current recursive call. BACK-
PROP is essentially a Breadth First Search (BFS) on the sub-
graph rooted at n. Since there can be at most linear num-
ber of (n1, (act, resp), n2) edges in this subgraph, and ev-
ery (n1, (act, resp), n2) edge is visited only once during the
BFS, BACKPROP terminates in linear time in the size of the
subgraph rooted at n. Hence, we conclude that Algorithm 1
terminates in at most double-exponential time, in the size of
ϕ of problem (ϕ,X ,Y).

Theorem 5. Algorithm 1 is correct, i.e., it returns a non-
empty strategy iff the given synthesis problem is realizable.

Proof. (Sketch) We prove by showing the main recursive pro-
cedure SEARCH is correct. If SEARCH does not detect any
loops on the graph, we can see that once an OR-node n is
tagged, the tag is stored until the algorithm terminates. n is
tagged as success if either n is detected as accepting, or there
exists an agent act, following which, all the successors are
also tagged as success, regardless of what the environment

resp is, and the current recursion returns True. Note that,
only in this case, the corresponding state-action pair is added
to strategy. If neither condition happens, n is tagged as fail-
ure, and the current recursion returns False.

If SEARCH detects a loop on n in the graph, the presence
of the loop leads to temporary failure. It could happen that a
parent node np (also further ancestor nodes) of n is tagged as
failure due to this temporary failure of n. Therefore, once n is
tagged as success, the success tag should be propagated in the
loops through BACKPROP. BACKPROP is correct, since the
tag of a parent node np (also further ancestor nodes) changes
from failure to success iff there exists an agent act, following
which, all the successors are also tagged as success, regard-
less of what the environment resp is. Therefore, BACKPROP
is able to eliminate the temporary failure caused by loops.
Hence, if a failure tag stays until the algorithm terminates,
this is a confirmed failure that is not affected by any tempo-
rary failure. As a result, Algorithm 1 terminates with the ini-
tial node tagged as success and returns a non-empty strategy
iff the given synthesis problem is realizable.

5 Implementation and Empirical Evaluations
We implemented the forward synthesis problem presented in
Section 4 in a tool called Cynthia in C++ 1. Cynthia is able
to take an LTLf synthesis problem (ϕ,X ,Y) and constructs a
strategy that realizes ϕ if one exists. We make use of library
SDD-2.0 (http://reasoning.cs.ucla.edu/sdd) to handle all SDD
related operations.
Optimizations. Cynthia applies some optimizations to speed
up the synthesis procedure. First, right before EXPAND an
OR-node n, we perform the pre-processing techniques de-
scribed in [Xiao et al., 2021]. More specifically, we check: (i)
there exists a one-step strategy that reaches accepting states
from n, then n is tagged as success; or (ii) there does not ex-
ist an agent move that can avoid sink state (a non-accepting
state only going back to itself) from n, then n is tagged
as failure. Moreover, despite being a depth-first search, the
SDD-based EXPAND(n), in fact, constructs all the connected
AndNd of n, and followup OR-nodes succ at once, which al-
lows us to conduct a “look-ahead” check. More specifically,
this “look-ahead” check tries to tag constructed succ by the
pre-processing techniques to speed up further search.
Experimental Methodology. We evaluated the efficiency
of Cynthia, by comparing against the following tools:
Lisa [Bansal et al., 2020] and Lydia [De Giacomo and Fa-
vorito, 2021] are state-of-the-art backward LTLf synthesis
approaches. Both tools compute the complete DFA first,
and then solve an adversarial reachability game following the
symbolic backward computation technique described in [Zhu
et al., 2017]. Ltlfsyn [Xiao et al., 2021] implements a SAT-
based on-the-fly forward synthesis approach.
Experiment Setup. Experiments were run on a computer
cluster, where each instance took exclusive access to a com-
puting node with Intel-Xeon processor running at 2.6 GHz,
with 8GB of memory and 300 seconds of time limit. The cor-
rectness of Cynthia was empirically verified by comparing

1Tool available at https://whitemech.github.io/cynthia.
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Figure 1: Comparison results on all benchmarks.

the results with those from all baseline tools. No inconsisten-
cies were encountered for all solved instances.
Benchmarks. We collected, in total, 1494 LTLf synthesis
instances from literature, consisting of 3 benchmark fam-
ilies: 40 Patterns instances [Xiao et al., 2021]; 54 Two-
player-Games instances [Tabajara and Vardi, 2019; Bansal
et al., 2020]; 1400 Random instances [Zhu et al., 2017;
De Giacomo and Favorito, 2021].
Results. Figure 1a and Figure 1b show the running time of
each tool on every instance of the GF -, and U -pattern, re-
spectively. Across these instances, we observe that Cynthia
is able to solve all instances with much less time compar-
ing to backward approaches, represented by Lisa and Lydia.
Comparing to Ltlfsyn, Cynthia is able to achieve comparative
performance on the GF -pattern instances, with time cost dif-
ference of <1 second (y-axis is in log scale), see Figure 1a.
On the U -pattern instances, Cynthia shows significantly bet-
ter performance, see Figure 1b. On the Two-player-Games
benchmarks, see Figure 1c, we observe that Cynthia is able
to dominate all other tools on the Nim instances. Yet, on both
Counter(s) instances, backward approaches show better per-
formance over all forward approaches, and Cynthia is almost
on par with Ltlfsyn. On the Random benchmarks, Cynthia,
in general, performs better than Ltlfsyn, by solving more in-
stances with less time, see Figure 1d. Nevertheless, Cynthia
cannot beat backward approaches.
Analysis. It is clear from the plots that Cynthia, in general,
shows an overall better performance than Ltlfsyn, illustrating
the efficiency and better scalability of our approach. In par-
ticular, there is a notable outperformance of Cynthia on the
U -pattern instances, see Figure 1b. The challenge in the U -
pattern instances lies mostly in proving realizable, and can
be achieved by just satisfying variables under control. Since
every variable appears only once on the right side of the U
operator, our approach is able to compress the branching la-
bels as propositional formulas, such that highly reducing the
branching factor and thus speeding up the search procedure.

When comparing Cynthia with backward approaches inte-
grated tools, it should be noted that, in general, forward ap-
proaches perform well on the instances where the result can
be obtained far before exploring the whole search space. In
our benchmarks, this is exactly what happens for Nim and
Pattern instances, where Cynthia shows dominating perfor-
mance over all tools, which demonstrates the promising effi-

ciency of forward synthesis.
On the other hand, backward approaches perform better

when it is necessary to explore the entire search space. In
the case of the Counter(s) instances, due to their specific
structure, in order to obtain a strategy, the searching space
to explore grows exponentially fast. In particular, the branch-
ing factor of AND-nodes, even after clustering, can remain
exponential in the number of environment variables, and so
leaving no space to further reduce. Nevertheless, backward
approaches can leverage powerful minimization to highly re-
duce the searching space such that achieving better perfor-
mance, as also observed in [Tabajara and Vardi, 2019]. For
the Random instances, which are randomly conjuncted LTLf
formulas, the advantage of possibly being lucky and find-
ing a solution quickly without exploring the entire search
space is overwhelmed by the fact that backward approaches
integrated with composition techniques [Bansal et al., 2020;
De Giacomo and Favorito, 2021] are able to first decompose
the conjuncted formula into smaller pieces, obtain the mini-
mized DFA of each conjunct and then compose them for final
game solving. It might be possible that similar composition
ideas could be leveraged to forward synthesis approaches as
well, although further research is necessary in this direction.

6 Conclusions
We investigated the effectiveness of forward search in LTLf
synthesis. We observed that even an uninformed search is
able to drastically improve the synthesis capability in several
cases (as in the Nim benchmarks above). This shows that
our approach is quite promising, especially considering that
we could move from the uninformed search presented here
to informed search exploiting heuristics [Mattmüller, 2013;
Jiménez and Torras, 2000].
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