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Abstract

Our work aims at developing reinforcement learn-
ing algorithms that do not rely on the Markov as-
sumption. We consider the class of Non-Markov
Decision Processes where histories can be ab-
stracted into a finite set of states while preserv-
ing the dynamics. We call it a Markov abstraction
since it induces a Markov Decision Process over a
set of states that encode the non-Markov dynamics.
This phenomenon underlies the recently introduced
Regular Decision Processes (as well as POMDPs
where only a finite number of belief states is reach-
able). In all such kinds of decision process, an
agent that uses a Markov abstraction can rely on
the Markov property to achieve optimal behaviour.
We show that Markov abstractions can be learned
during reinforcement learning. Our approach com-
bines automata learning and classic reinforcement
learning. For these two tasks, standard algorithms
can be employed. We show that our approach
has PAC guarantees when the employed algorithms
have PAC guarantees, and we also provide an ex-
perimental evaluation.

1 Introduction

In the classic setting of Reinforcement Learning (RL), the
agent is provided with the current state of the environment
[Sutton and Barto, 2018]. States are a useful abstraction for
agents, since predictions and decisions can be made accord-
ing to the current state. This is RL under the Markov as-
sumption, or Markov RL. Here we focus on the more realistic
non-Markov RL setting [Hutter, 2009; Brafman and De Gi-
acomo, 2019; Icarte et al., 2019; Ronca and De Giacomo,
2021] where the agent is not given the current state, but can
observe what happens in response to its actions. The agent
can still try to regain the useful abstraction of states. How-
ever, now the abstraction has to be learned, as a map from
every history observed by the agent to some state invented by
the agent [Hutter, 2009].

We propose RL agents that learn a specific kind of abstrac-
tion called Markov abstraction as part of the overall learn-
ing process. Our approach combines automata learning and
Markov RL in a modular manner, with Markov abstractions

acting as an interface between the two modules. A key aspect
of our contribution is to show how the sequence of intermedi-
ate automata built during learning induce partial Markov ab-
stractions that can be readily used to guide exploration or ex-
ploitation. Our approach is Probably Approximately Correct
(PAC), cf. [Kearns and Vazirani, 1994], whenever the same
holds for the employed automata and Markov RL algorithms.

The idea of solving non-Markov tasks by introducing a
Markovian state space can already be found in [Bacchus ef
al., 1996] and more recently in [Brafman et al., 2018; Icarte
et al., 2018]. RL in this setting has been considered [Icarte et
al., 2018; De Giacomo et al., 2019; Gaon and Brafman, 2020;
Xu et al., 2020]. This setting is simpler than ours since transi-
tions are still assumed to be Markov. The setting where both
transitions and rewards are non-Markov has been considered
in [Icarte et al., 2019; Brafman and De Giacomo, 2019], with
RL studied in [Icarte et al., 2019; Abadi and Brafman, 2020;
Ronca and De Giacomo, 2021]. Such RL techniques are
based on automata learning. The approach in [Ronca and De
Giacomo, 2021] comes with PAC guarantees, as opposed to
the others which do not. Our approach extends the techniques
in [Ronca and De Giacomo, 2021] in order to use the learned
automata not only to construct the final policy, but also to
guide exploration.

Abstractions from histories to states have been studied in
[Hutter, 2009; Maillard et al., 2011; Veness et al., 2011;
Nguyen et al., 2013; Lattimore et al., 2013; Hutter, 2016;
Majeed and Hutter, 2018]. [Hutter, 2009] introduces the idea
of abstractions from histories to states. Its algorithmic solu-
tion, as well as the one in [Veness er al., 2011], is less general
than ours since it assumes a bound on the length of the histo-
ries to consider. This corresponds to a subclass of automata.
[Maillard er al., 2011] provides a technique to select an ab-
straction from a given finite set of candidate abstractions; in-
stead, we consider an infinite set of abstractions. [Nguyen et
al., 2013] considers a set of abstractions without committing
to a specific way of representing them. As a consequence,
they are not able to take advantage of specific properties of
the chosen representation formalism, in the algorithm nor in
the analysis. On the contrary, we choose automata, which al-
lows us to take advantage of existing automata-learning tech-
niques, and in particular of their properties such as the in-
cremental construction. [Lattimore et al., 2013] studies non-
Markov RL in the case where the non-Markov decision pro-



cess belongs to a compact class. Their results do not apply
to our case because the class of decision processes admitting
a Markov abstraction is not compact. [Majeed and Hutter,
2018] studies Q-learning with abstractions, but it assumes
that abstractions are given. [Hutter, 2016] provides a result
that we use in Section 3; however, none of their abstractions
is required to preserve the dynamics, as we require for our
Markov abstractions. Even in the case called ‘exact state ag-
gregation’, their abstractions are only required to preserve re-
wards, and not to preserve observations. In this setting, it is
unclear whether automata techniques apply.

Proofs and experimental details are given in the extended
version [Ronca et al., 2022].

2 Preliminaries

For x and z strings, xz denotes their concatenation. For ¥
and I" alphabets, XI" denotes the set of all strings oy with
o € Yand v € I'. For f and g functions, fg denotes their
composition. We write f : X ~» Y to denote a function
f: X xY — [0,1] that defines a probability distribution
f(-|z) over Y forevery x € X.

Non-Markov Decision Processes. A Non-Markov Deci-
sion Process (NMDP), cf. [Brafman and De Giacomo, 20191,
isatuple P = (4,0, R,(, T,R) with components defined
as follows. A is a finite set of actions, O is a finite set of ob-
servations, R C Rx is a finite set of non-negative rewards,
( is a special symbol that denotes episode termination. Let
the elements of H = (AOR)* be called histories, and let
the elements of £ = (AOR)*A( be called episodes. Then,
T : H x A~ (OU{(}) is the transition function, and
R : H x Ax O ~ Ris the reward function. The transi-
tion and reward functions can be combined into the dynam-
ics function D : H x A ~ (OR U {(}), which describes
the probability to observe next a certain pair of observation
and reward, or termination, given a certain history and ac-
tion. Namely, D(or|h,a) = T(olh,a) - R(r|h,a,0) and
D(¢|h,a) = T(¢|h,a). We often write an NDMP directly
as (A,0,R,(,D). A policy is a function 7 : H ~ A.
The uniform policy , is the policy defined as m,(alh) =
1/|A| for every a and every h. The dynamics of P under
a policy 7 describe the probability of an episode remain-
der, given the history so far, when actions are chosen ac-
cording to a policy m; it can be recursively computed as
D, (aore|lh) = w(alh) - D(or|h,a) - D, (e|lhaor), with base
case D (al|h) = w(a|lh)-D(¢|h, a). Since we study episodic
reinforcement learning, we require episodes to terminate with
probability one, ie., > .o Dx(ele) = 1 for every policy
7.1 This requirement ensures that the following value func-
tions take a finite value. The value of a policy m given a
history h, written v (h), is the expected sum of future re-
wards when actions are chosen according to 7 given that
the history so far is h; it can be recursively computed as
vr(h) =", m(alh)-D(o,r|h,a)-(r+vx(haor)). The op-
timal value given a history h is v.(h) = max, v, (h), which
can be expressed without reference to any policy as v, (h) =

'A constant probability p of terminating at every step amounts to
a discount factor of 1 — p, see [Puterman, 1994].

max, (Y, D(o,7|h,a) - (r + vi(haor))). The value of an
action a under a policy 7 given a history h, written q. (h, a),
is the expected sum of future rewards when the next action is
a and the following actions are chosen according to 7, given
that the history so far is h; itis q.(h,a) = >, . D(o,r|h,a)-
(r+v(haor)). The optimal value of an action a given a his-
tory h is q«(h, a) = max, q,(h,a), and it can be expressed
as qx(h,a) = >, D(o,r|h,a) - (r + v.(haor)). A policy
7 is optimal if v(¢) = v.(¢). For e > 0, a policy 7 is
e-optimal if v (e) > v,(g) — e

Markov Decision Processes. A Markov Decision Process
(MDP) [Bellman, 1957; Puterman, 1994] is a decision pro-
cess where the transition and reward functions (and hence the
dynamics function) depend only on the last observation in the
history, taken to be an arbitrary observation when the history
is empty. Thus, an observation is a complete description of
the state of affairs, and it is customarily called a state to em-
phasise this aspect. Hence, we talk about a set .S of states
in place of a set O of observations. All history-dependent
functions—e.g., transition and reward functions, dynamics,
value functions, policies—can be seen as taking a single state
in place of a history.

Episodic RL. Given a decision process P and a required
accuracy € > 0, Episodic Reinforcement Learning (RL) for
P and e is the problem of an agent that has to learn an e-
optimal policy for P from the data it collects by interacting
with the environment. The interaction consists in the agent
iteratively performing an action and receiving an observation
and a reward in response, until episode termination. Specif-
ically, at step ¢, the agent performs an action a;, receiving
a pair of an observation o; and a reward r;, or the termi-
nation symbol (, according to the dynamics of the decision
process P. This process generates an episode of the form
10171020272 . . . a, (. The collection of such episodes is the
data available to the agent for learning.

Complexity Functions. Describing the behaviour of a
learning algorithm requires a way to measure the complex-
ity of the instance Z to be learned, in terms of a set of nu-
meric parameters that reasonably describe the complexity of
the instance—e.g., number of states of an MDP. Thus, for
every instance Z, we have a list ¢z of values for the parame-
ters. We use the complexity description to state properties for
the algorithm by means of complexity functions. A complex-
ity function f is an integer-valued non-negative function of
the complexity parameters and possibly of other parameters.
Two distinguished parameters are accuracy € > 0, and prob-
ability of failure 6 € (0,1). The dependency of complexity
functions on these parameters is of the form 1/¢ and In(1/4).
When writing complexity functions, we will hide the specific
choice of complexity parameters by writing Z instead of ¢z,
and we will write € and § for 1/e and In(1/4). For instance,
we will write f(Z, €, ) in place of f(¢z,1/¢,1n(1/4)).

Automata. A Probabilistic Deterministic Finite Automa-
ton (PDFA), cf. [Balle et al, 2014], is a tuple A =
(Q,%,T, 7, qo) where: @ is a finite set of states; X is a fi-
nite alphabet; I" is a finite set of termination symbols not in 3;
T:Q x X — @ is the (deterministic) transition function; A :
Q@ x (XUT") — [0, 1] is the probability function, which defines



a probability distribution A(+|¢) over X UT for every state g €
Q; qo € Q is the initial state. The iterated transition function
TF: QX X* — Q isrecursively defined as 7*(q, 01 ... 0 ) =
7(7(q,01),02 . ..0y,) with base case 7*(q,e) = g; further-
more, 7*(w) denotes 7*(qg,w). It is required that, for ev-
ery state ¢ € @, there exists a sequence o1, . .., 0, of sym-
bols of 3 such that A(7*(g,01...0;-1),0;) > 0 for every

€ [1,n], and X\(7(q,01...05),7) > 0 for v € I'—to en-
sure that every string terminates with probability one. Given
astring x € ¥*, the automaton represents the probability dis-
tribution A(+|z) over X*T" defined recursively as A(oy|z) =
A7(x),0) - A(y|zo) with base case A(v|z) = A(7(x),7)
fory eT.

3 Markov Abstractions

Operating directly on histories is not desirable. There are
exponentially-many histories in the episode length, and typ-
ically each history is observed few times, which does not
allow for computing accurate statistics. A solution to this
problem is to abstract histories to a reasonably-sized set of
states while preserving the dynamics. We fix an NMDP
7) = <A7O7R7C7D>'

Definition 1. A Markov abstraction over a finite set of states
S is a function o : H — S such that, for every two histories
hi and ho, a(hy) = a(he) implies D(:|h1,a) = D(:|hz,a)

for every action a.

Given an abstraction «, its repeated application a* trans-
forms a given history by replacing observations by the corre-
sponding states as follows:

X
a*(a10171 « . . @pOpTy) = S0A18171 - - - AnSnTn,
where S; = Ot(hl‘) and hz = Q10171 ...Q;0;7;.

Now consider the probability P, (s;, r;|h;—1, a;) obtained by
marginalisation as:

Po(si,rilhi-1,a:) = >

o:a(hi—1a;0)=s;

D(O,’I‘Z‘|hi,17 ai).

Since the dynamics D(o,7;|h;—1,a;) are the same for ev-
ery history mapped to the same state, there is an MDP
M$ with dynamics D® such that P,(s;r;|hi—1,a;) =
D (s;ri|o(hi—1), a;). The induced MDP M$; can be solved
in place of P. Indeed, the value of an action in a state is the
value of the action in any of the histories mapped to that state
[Hutter, 2016, Theorem 1]. In particular, if 7 is an e-optimal
policy for M$%, then ma is an e-optimal policy for P.

3.1 Related Classes of Decision Processes

We discuss how Markov abstractions relate to existing classes
of decision processes.

MDPs. MDPs can be characterised as the class of NMDPs
where histories can be abstracted into their last observation.
Namely, they admit «(haor) = o as a Markov abstraction.

RDPs. A Regular Decision Process (RDP) can be defined
in terms of the temporal logic on finite traces LDLy [Braf-
man and De Giacomo, 2019] or in terms of finite transducers
[Ronca and De Giacomo, 2021]. The former case reduces to

Figure 1: Target automaton (left), and hypothesis automaton (right).
Solid edges denote transitions for input 1, and dashed edges for 0.

the latter by the well-known correspondence between LDL ¢
and finite automata. In terms of finite transducers, an RDP
isan NMDP P = (A, O, R, (, D) whose dynamics function
can be represented by a finite transducer 7' that, on every his-
tory h, outputs the function Dy, : A ~ (OR U {(}) induced
by D when its first argument is . Here we observe that the
iterated version of the transition function of 7" is a Markov
abstraction.

POMDPs. A Partially-Observable Markov Decision Pro-
cess (POMDP), cf. [Kaelbling ef al., 1998], is a tuple P =
(A,O,R,(, X, T,R, 0, zp) where: A, O, R, ¢ are as in an
NMDP; X is a finite set of hidden states; T : X x A ~ X
is the transition function; R : X x A x O ~ R is the re-
ward function; O : X x Ax ~ (O U {(}) is the obser-
vation function; xo € X is the initial hidden state. To de-
fine the dynamics function—i.e., the function that describes
the probability to observe next a certain pair of observation
and reward, or termination, given a certain history of obser-
vations and action—it requires to introduce the belief function
B : H ~ X, which describes the probability of being in a
certain hidden state given the current history. Then, the dy-
namics function can be expressed in terms of the belief func-
tionas D(or|h,a) = > B(z|h)-O(o|z,a)-R(r|z,a,0) and
D(¢|h,a) =", B(z|h)-O(¢|z, a). Policies and value func-
tions, and hence the notion of optimality, are as for NMDPs.
For each history h, the probability distribution B(-|h) over
the hidden states is called a belief state. We note the follow-
ing property of POMDPs.

Theorem 1. If a POMDP has a finite set of reachable belief
states, then the function that maps every history to its belief
state is a Markov abstraction.

Proof sketch. The function a(h) = B(:|h) is a Markov ab-
straction, as it can be verified by inspecting the expression
of the dynamics function of a POMDP given above. Specifi-
cally, a(h1) = a(hs) implies B(:|h1) = B(:|h2), and hence
D(:|h1,a) = D(:|ha,a) for every action a. O

4 Our Approach to Non-Markov RL

Our approach combines automata learning with Markov RL.
We first describe the two modules separately, and then present
the RL algorithm that combines them. For the section we fix
an NMDP P = (A, O, R, (, D), and assume that it admits a
Markov abstraction « on states S.



4.1 First Module: Automata Learning

Markov abstractions can be learned via automata learning due
to the following theorem.

Theorem 2. There exist a transition functionT : SX AOR —
S and an initial state so such that, for every Markov policy
on S, the dynamics D ., of P are represented by an automa-
ton (S, AOR, AC, T, \, so) for some probability function \.

Furthermore, 7* = «.

Proof sketch. The start state is so = «(e). The transition
function is defined as 7(s, aor) = a(hsaor) where hy is an
arbitrarily chosen history such that «(hs) = s. Clearly 7* =
a. Then, the probability function is defined as A(s, aor) =
m(als) - D(or|hsa) and A(s,al) = 7(als) - D({|hsa). It can
be shown by induction that the resulting automaton represents
D, regardless of the choice of the representative histories
hs, since all histories mapped to the same state determine the
same dynamics function. O

We present an informal description of a generic PDFA-
learning algorithm, capturing the essential features of the al-
gorithms in [Ron er al., 1998; Clark and Thollard, 2004;
Palmer and Goldberg, 2007; Balle et al., 2013; Balle et al.,
2014]. We will highlight the characteristics that have an im-
pact on the rest of the RL algorithm. To help the presentation,
consider Figure 1. The figure shows the transition graph of a
target automaton (left), and the hypothesis graph built so far
by the algorithm (right). In the hypothesis graph we distin-
guish safe and candidate nodes. Safe nodes are circles in the
figure. They are in a one-to-one correspondence with nodes
in the target, they have all transitions defined, and they are
not going to change. Candidate nodes are squares in the fig-
ure. Their transitions are not defined, and hence they form
the frontier of the learned part of the graph. The graph is
extended by promoting or merging a candidate. If the algo-
rithm tests that a candidate node is distinct from every other
safe state in the hypothesis graph, then it is promoted to safe.
Upon promotion, a candidate is added for each possible tran-
sition from the just-promoted safe node. This effectively ex-
tends the automaton by pushing the frontier. If the algorithm
tests that a candidate is equivalent to a safe node already in the
hypothesis, then the candidate is merged into the safe node.
The merge amounts to deleting the candidate node and redi-
recting all its incoming edges to the safe node. Thus, the sta-
tistical core of the algorithm consists in the tests. The test be-
tween two nodes is based on the input strings having prefixes
that map to the two nodes respectively. A sufficient number
of strings yields a good accuracy of the test. Assuming that
all tests yield the correct result, it is easy to see that every new
hypothesis is closer to the target. We focus on the approach
in [Balle et al., 2014], which has the following guarantees.

Guarantees 1. There are complexity functions K, N, Ty such
that, for every & and every target automaton A, the au-
tomata learning algorithm builds a sequence of hypothe-
ses Ay, ..., A, satisfying the following conditions: (sound-
ness) with probability at least 1 — 6, for every i € [1,n], there
is a transition-preserving bijection between the safe states of
A; and a subset of states of the target A; (incrementality) for
every i € [2,n], the hypothesis A; contains all safe states

and all transitions between safe states of A;_1,; (liveness) ev-
ery candidate s is either promoted or merged within reading
an expected number K (A, ) of strings having a prefix that
maps to s; (boundedness) the number n of hypotheses is at
most N (A); (computational cost) every string x is processed
in time Ty (A, 6, |z]).

We will ensure that statistics for a state ¢ are no longer
updated once it is promoted to safe. This preserves the guar-
antees, and makes the algorithm insensitive to changes in the
distribution A(q’, -) of the target state ¢’ corresponding to ¢
that take place after ¢ is promoted.

Since a hypothesis automaton .4; contains candidate states,
that do not have outgoing transitions, the Markov abstraction
o; obtained as the iteration 7;° of its transition function is not
a complete Markov abstraction, but a partial one. As a con-
sequence, the MDP M, induced by «; is also partial. Specif-
ically, it contains states from which one cannot proceed, the
ones deriving from candidate nodes.

4.2 Second Module: Markov RL

When a Markov RL agent is confined to operate in a subset
S’ of the states S of an MDP, it can always achieve one of
two mutually-exclusive results. The first result is that it can
find a policy that is near-optimal for the entire MDP, ignoring
the states not in S’. Otherwise, there is a policy that leads to
a state not in S’ sufficiently often. This is the essence of the
Explore or Exploit lemma from [Kearns and Singh, 2002].
The property is used explicitly in the E3 algorithm [Kearns
and Singh, 2002], and more implicitly in algorithms such as
RMax [Brafman and Tennenholtz, 2002]. Indeed, these algo-
rithms can be employed to satisfy the following guarantees.

Guarantees 2. There are complexity functions E, T, such
that, for every €, every 6, and every MDP M where the
agent is restricted to operate in a subset S’ the states, the
two following conditions hold: (explore or exploit) within
E(M,¢,0) episodes, with probability at least 1 — 0, either
the agent finds an e-optimal policy or there is a state not in
S’ that is visited at least once; (computational cost) every
episode e is processed in time To(M, €, 6, |e]).

4.3 Overall Approach

We will have a Markov agent operating in the MDP induced
by the current partial abstraction, in order to either find a
near-optimal policy (when the abstraction is sufficiently com-
plete) or to visit candidate states (to collect strings to extend
the abstraction). Concretely, we propose Algorithm 1, that
employs the modules Automatalearning and MarkovRL to
solve non-Markov RL. It starts with an empty abstraction «
(Line 1), and then it loops, processing one episode per itera-
tion. Line 3 corresponds to the beginning of an episode, and
hence the algorithm sets the current history to the empty his-
tory. Lines 4-8 process the prefix of the episode that maps
to the safe states; on this prefix, the Markov RL agent is em-
ployed. Specifically, the agent is first queried for the action to
take (Line 5), the action is then executed (Line 6), the result-
ing transition is shown to the agent (Line 7), and the current
history is extended (Line 8). Lines 9-12 process the remain-
der of the episode, for which we do not have an abstraction



Algorithm 1: NonMarkovRL

1o+ 0

2 loop

3 h <+ ¢;

4 while a(h) is safe and episode is not over do
5 a < MarkovRL.choose();

6 o0, < perform action a;

7 MarkovRL.observe(«(h), a,r, a(haor));
8 h < haor;

9 while episode is not over do

10 a < pick an action according to my;

1 o, r <« perform action a;

12 h < haor;

3 « < Automatalearning.consume(h);

14 MarkovRL.update(«);

yet. First, an action is chosen according to the uniform pol-
icy m, (Line 10), the action is then executed (Line 11), and
the current history is extended (Line 12). Lines 13—14 pro-
cess the episode that has just been generated, before moving
to the next episode. In Line 13 the automata learning algo-
rithm is given the episode, and it returns the possibly-updated
abstraction «. Finally, in Line 14, the Markov agent is given
the latest abstraction, and it has to update its model and/or
statistics to reflect any change in the abstraction. We assume
a naive implementation of the update function, that amounts
to resetting the Markov agent when the given abstraction is
different from the previous one.

The algorithm has PAC guarantees assuming PAC guaran-
tees for the employed modules. In particular, let K, N, T be
as in Guarantees 1, and let E/, T}, be as in Guarantees 2. In the
context of Algorithm 1, the target automaton is the automa-
ton A% that represents the dynamics of P under the uniform
policy m,, and the MDP the Markov agent interacts with is
the MDP M, induced by «. Furthermore, let Lp be the ex-
pected episode length for P.

Theorem 3. For any given € and 6, and for any NMDP P ad-
mitting a Markov abstraction o, Algorithm 1 has probability
at least 1 — 0 of solving the Episodic RL problem for P and e,
using a number of episodes

O(N(Ap) - [E(M3p,€,0) /K (Ap,0/2)])

with ' = §/(2- N(A%)), and a number of computation steps
that is proportional to the number of episodes by a quantity

O(Ts( %,5/2,LP)+TE( %76,5/,.[/73)).

Proof sketch. An execution of the algorithm can be split into
stages, with one stage for each hypothesis automaton. By
the boundedness condition, there are at most N (AY}) stages.
Consider an arbitrary stage. Within E(M$,€,0’) episodes,
the Markov agent either exploits or explores. If it exploits,
i.e., it finds an e-optimal policy 7 for the MDP induced by
the current partial abstraction oy, then 7 is e-optimal for P.
Otherwise, a candidate state is explored K (A%, §/2) times,
and hence it is promoted or merged. The probability ¢ of fail-
ing is partitioned among the one run of the automata learning

algorithm, and the N (A%) independent runs of the Markov
RL algorithm. Regarding the computation time, note that the
algorithm performs one iteration per episode, it operates on
one episode in each iteration, calling the two modules and
performing some other operations having a smaller cost. [

5 Empirical Evaluation

We show an experimental evaluation of our approach.’
We employ the state-of-the-art stream PDFA learning al-
gorithm [Balle er al,, 2014] and the classic RMax algo-
rithm [Brafman and Tennenholtz, 2002]. They satisfy Guar-
antees 1 and 2. We consider the domains from [Abadi and
Brafman, 2020]: Rotating MAB, Malfunction MAB, Cheat
MAB, and Rotating Maze; a variant of Enemy Corridor
[Ronca and De Giacomo, 2021]; and two novel domains:
Reset-Rotating MAB, and Flickering Grid. Reset-Rotating
MARB is a variant of Rotating MAB where failing to pull the
correct arm brings the agent back to the initial state. Flicker-
ing Grid is a basic grid with an initial and a goal position, but
where at some random steps the agent is unable to observe
its position. All domains are parametrised by k, which makes
the domains more complex as it is assigned larger values.
Figure 2 shows our performance evaluation. Plots include
three different approaches. First, our approach referred to as
RMax Abstraction, i.e., the RMax Markov agent provided
with partial Markov abstractions as they are incrementally
learned. Second, a Random Sampling approach, equivalent
to what is proposed in [Ronca and De Giacomo, 2021], that
always explores at random. Third, the RMax agent as a base-
line for the performance of a purely Markov agent, that does
not rely on Markov abstractions. Results for each approach
are averaged over 5 trainings and show the standard deviation.
At each training, the agent is evaluated at every 15k training
episodes. Each evaluation is an average over 50 episodes,
where for each episode we measure the accumulated reward
divided by the number of steps taken. Notice that the RMax
Abstraction agent takes actions uniformly at random on his-
tories where the Markov abstraction is not yet defined, other-
wise taking actions greedily according to the value function.
The results for Reset-Rotating MAB (Figure 2a) show the
advantage of the exploration strategy of our approach, com-
pared to Random Sampling. In fact, in this domain, random
exploration does not allow for exploring states that are far
from the initial state. The results for Enemy Corridor (Fig-
ure 2b) show that our approach scales with the domain size.
Namely, in Enemy Corridor we are able to increase the corri-
dor size k up to 64. The results for Flickering Grid (Figure 2c)
show that our approach works in a domain with partial ob-
servability, that is natural to model as a POMDP. This is in
line with our Theorem 1. The Markov abstraction for Flick-
ering Grid maps histories to the current cell; intuitively, the

The results shown in this paper are reproducible. Source code,
instructions, and definitions of the experiments are available at:
github.com/whitemech/markov-abstractions-code-ijcai22. Experi-
ments were carried out on a server running Ubuntu 18.04.5 LTS,
with 512GB RAM, and an 80 core Intel Xeon E5-2698 2.20GHz.
Each training run takes one core. The necessary amount of compute
and time depends mostly on the number of episodes set for training.
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Figure 2: Empirical evaluation of Markov Abstractions.

agent learns to compute its position even if sometimes it is
not explicitly provided by the environment. For this domain,
Figure 2d shows the number of steps the agent is in a safe
state against when it is not. The figure exemplifies the incre-
mental process of learning a Markov abstraction, as the time
spent by the agent out of the safe region is high during the first
episodes, and it decreases as more histories are collected and
more safe states get to be learned by the stream PDFA learn-
ing algorithm; we see the agent achieves optimal behaviour
around 5 - 10° episodes, when it no longer encounters candi-
date states, since all relevant states have been learned.

In the domains from [Abadi and Brafman, 2020] (Fig-
ures 2e-2h) our approach has poor performance overall. We
are able to show convergence in all domains except Rotating
Maze with k = 2, 3 and Malfunction MAB with & = 5. How-
ever, it requires a large number of episodes before achieving
a close-to-optimal average reward. We observe that all these
domains have a low distinguishability between the probabil-
ity distribution of the states. The performance of PDFA-
learning is greatly dependent on such parameter, cf. [Balle
et al., 2013]. Furthermore, in these domains, the value of dis-
tinguishability decreases with k. On the contrary, in Reset-
Rotating MAB, Enemy Corridor, and Flickering Grid, dis-
tinguishability is high and independent of k. Therefore, we
conclude that a low distinguishability is the source of poor
performance. In particular, it causes the automata learning
module to require a large number of samples.

We compare our approach against two related approaches.
First, we compare against [Abadi and Brafman, 2020] that
combines deterministic finite automata learning with history
clustering to build a Mealy Machine that represents the un-
derlying decision process, while employing MCTS to com-
pute policies for the learned models. Comparing to the results
published in [Abadi and Brafman, 2020] for Rotating MAB,
Malfuction MAB, and Rotating Maze, our approach has bet-
ter performance in Rotating MAB, and worse performance in

the other domains. Second, we compare against [Icarte ef al.,
2019], also based on automata learning. Our approach outper-
forms theirs in all the domains mentioned in this paper, and
their approach outperforms ours in all their domains. Specif-
ically, their algorithm does not converge in our domains, and
our algorithm does not converge in theirs. Our poor perfor-
mance is explained by the fact that all domains in [Icarte et
al., 2019] have a low distinguishability, unfavourable to us.
On the other hand, their poor performance in our domains
might be due to their reliance on local search methods.

6 Conclusion and Future Work

We presented an approach for learning and solving non-
Markov decision processes, that combines standard RL with
automata learning in a modular manner. Our theoretical re-
sults show that, for NMDPs that admit a Markov abstraction,
e-optimal policies can be computed with PAC guarantees, and
that its dynamics can be accurately represented by an au-
tomaton. The experimental evaluation shows the feasibility of
the approach. The comparison with the random-exploration
baseline shows the advantage of a smarter exploration based
on the automaton as it is still being learned, which is an im-
portant aspect introduced in this paper. Some of the domains
illustrate the difficulty of learning when distinguishability is
low—an issue of the underlying automata learning algorithm.
At the same time, other domains show good scalability of the
overall approach when distinguishability stays high.

The difficulties encountered by the PDFA-learning algo-
rithm in domains with low distinguishability suggest that the
existing PDFA-learning techniques should be further devel-
oped in order to be effective in RL. We see it as an interesting
direction for future work. A second direction is to make our
approach less reliant on the automata learning component.
Specifically, an agent could operate directly on the histories
for which the current Markov abstraction is yet undefined.



Acknowledgments

This work is partially supported by the ERC Advanced Grant
WhiteMech (No. 834228), by the EU ICT-48 2020 project
TAILOR (No. 952215), by the PRIN project RIPER (No.
20203FFYLK), and by the JPMorgan AI Faculty Research
Award “Resilience-based Generalized Planning and Strategic
Reasoning”.

References

[Abadi and Brafman, 2020] Eden Abadi and Ronen I. Braf-
man. Learning and solving regular decision processes. In
1JCAI 2020.

[Bacchus et al., 1996] Fahiem Bacchus, Craig Boutilier, and
Adam J. Grove. Rewarding behaviors. In AAAI, 1996.

[Balle et al., 2013] Borja Balle, Jorge Castro, and Ricard
Gavalda. Learning probabilistic automata: A study in state
distinguishability. Theor. Comp. Sci., 2013.

[Balle et al., 2014] Borja Balle, Jorge Castro, and Ricard
Gavalda. Adaptively learning probabilistic deterministic
automata from data streams. Mach. Learn., 2014.

[Bellman, 1957] Richard Bellman.
process. J. Math. Mech., 1957.

[Brafman and De Giacomo, 2019] Ronen I. Brafman and
Giuseppe De Giacomo. Regular decision processes: A
model for non-markovian domains. In IJCAI, 2019.

A markovian decision

[Brafman and Tennenholtz, 2002] Ronen 1. Brafman and
Moshe Tennenholtz. R-Max: A general polynomial time
algorithm for near-optimal reinforcement learning. JMLR,
2002.

[Brafman et al., 2018] Ronen I. Brafman, Giuseppe De Gia-
como, and Fabio Patrizi. LTLf/LDLf non-Markovian re-
wards. In AAAI, 2018.

[Clark and Thollard, 2004] Alexander Clark and Franck
Thollard. PAC-learnability of probabilistic deterministic
finite state automata. J. Mach. Learn. Res., 2004.

[De Giacomo et al., 2019] Giuseppe De Giacomo, Luca Ioc-
chi, Marco Favorito, and Fabio Patrizi. Foundations for
restraining bolts: Reinforcement learning with LTLf/LDLf
restraining specifications. In ICAPS, 2019.

[Gaon and Brafman, 2020] Maor Gaon and Ronen I. Braf-
man. Reinforcement learning with non-markovian re-
wards. In AAAI 2020.

[Hutter, 2009] Marcus Hutter. Feature reinforcement learn-
ing: PartI. Unstructured MDPs. J. Artif. Gen. Intell., 2009.

[Hutter, 2016] Marcus Hutter. Extreme state aggregation be-
yond markov decision processes. Theor. Comp. Sci., 2016.

[Tcarte ef al., 2018] Rodrigo Toro Icarte, Toryn Q. Klassen,
Richard Anthony Valenzano, and Sheila A. Mcllraith. Us-
ing reward machines for high-level task specification and
decomposition in reinforcement learning. In ICML, 2018.

[Tcarte ef al., 2019] Rodrigo Toro Icarte, Ethan Waldie, To-
ryn Q. Klassen, Richard Anthony Valenzano, Margarita P.

Castro, and Sheila A. Mcllraith. Learning reward ma-
chines for partially observable reinforcement learning. In
NeurlPS, 2019.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell.,
1998.

[Kearns and Singh, 2002] Michael J. Kearns and Satinder P.
Singh. Near-optimal reinforcement learning in polynomial
time. Mach. Learn., 2002.

[Kearns and Vazirani, 1994] Michael J. Kearns and
Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

[Lattimore et al., 2013] Tor Lattimore, Marcus Hutter, and
Peter Sunehag. The sample-complexity of general rein-
forcement learning. In ICML, 2013.

[Maillard er al., 2011] Odalric-Ambrym Maillard, Rémi
Munos, and Daniil Ryabko. Selecting the state-
representation in reinforcement learning. In NeurlPS,
2011.

[Majeed and Hutter, 2018] Sultan Javed Majeed and Marcus
Hutter. On Q-learning convergence for non-markov deci-
sion processes. In IJCAI, 2018.

[Nguyen et al., 2013] Phuong Nguyen, Odalric-Ambrym
Maillard, Daniil Ryabko, and Ronald Ortner. Competing
with an infinite set of models in reinforcement learning. In
AISTATS, 2013.

[Palmer and Goldberg, 2007] Nick Palmer and Paul W.
Goldberg. PAC-learnability of probabilistic deterministic
finite state automata in terms of variation distance. Theor.
Comp. Sci., 2007.

[Puterman, 1994] Martin L. Puterman. Markov Decision

Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994.

[Ron et al., 1998] Dana Ron, Yoram Singer, and Naftali
Tishby. On the learnability and usage of acyclic proba-
bilistic finite automata. J. Comp. Syst. Sci., 1998.

[Ronca and De Giacomo, 2021] Alessandro Ronca and
Giuseppe De Giacomo. Efficient PAC reinforcement
learning in regular decision processes. In IJCAI, 2021.

[Ronca et al., 2022] Alessandro Ronca, Gabriel Paludo
Licks, and Giuseppe De Giacomo. Markov abstractions
for PAC reinforcement learning in non-markov decision

processes. CoRR, abs/2205.01053, 2022.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement learning: An introduction. Adaptive
computation and machine learning. MIT Press, 2018.

[Veness et al., 2011] Joel Veness, Kee Siong Ng, Marcus
Hutter, William T. B. Uther, and David Silver. A Monte-
Carlo AIXI approximation. J. Artif. Intell. Res., 2011.

[Xu et al., 2020] Zhe Xu, Ivan Gavran, Yousef Ahmad, Ru-
pak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for rein-
forcement learning. In ICAPS, 2020.



	Introduction
	Preliminaries
	Markov Abstractions
	Related Classes of Decision Processes

	Our Approach to Non-Markov RL
	First Module: Automata Learning
	Second Module: Markov RL
	Overall Approach

	Empirical Evaluation
	Conclusion and Future Work

