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Abstract—Recent years witnessed a growing interest in the
employment of intelligent techniques for the management of
manufacturing processes in smart manufacturing. These pro-
cesses may include tens of resources distributed among several
different companies composing the supply chain. The status
of the different resources evolves over time in terms of cost,
quality, and probability of break/unavailability, thus requiring
the process to be adaptive and resilient to disruptions. Due to the
high number of involved resources, making decisions manually
soon become unfeasible, thus requiring automated techniques
to solve the problem. In this paper, we discuss the potential
and limitations of automated reasoning techniques for making
modern supply chains adaptive and resilient by relying on the
information provided by resources through their APIs.

Index Terms—Industrial API, Smart manufacturing, Auto-
mated reasoning, Planning, Markov Decision Processes

I. INTRODUCTION

The concept of smart manufacturing, embodies a vision of
industrial processes where computing devices are integrated in
most of manufacturing steps. In particular, industrial processes
are supposed to be fully (or mostly) automated, adaptive to
changes, flexible, evolvable, resilient to errors and attentive
to the more knowledgeable operators’ skills and needs. Of
the utmost importance in this context are adaptivity, i.e., the
ability of the system to adapt to certain conditions, e.g., a
rescheduling of the production process, and resilience, i.e.,
the capacity to continue the work despite disruptions as the
breakdown of a machine. These two objectives are particularly
challenging due to the dynamism and uncertainty of manufac-
turing environments. In factories, for example, machines are
subject to wear and may provide unpredictable results.

Processes must not be considered isolated though. They
instead involve several companies along complex supply
chains [1]. Such a network of players co-operates together to
accomplish multiple production goals. They consist of loosely
coupled entities, and their organizational structure is adapted
dynamically according to the tasks to be performed [2].

In such supply chains, the total amount of manufacturing
resources is huge. Also, they belong to several different
categories including software systems, machines, robots, and
human workers. Each resource provides a set of functionalities
and has its own characteristics, e.g., quality, speed, costs, and
probability of break. Noteworthy, the very same functionality
can be offered by different resources, optionally from different
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categories (e.g., painting a part can be done either by a
machine or by a human), and the execution of a multi-
party process requires an accurate selection of resources in
order to be completed in the most convenient way. Such a
selection though, cannot be considered static as the condi-
tions of resources change over time, as well as needs and
(potentially conflicting) performance measures. Additionally,
non-trivial constraints between resources may exist, making
the overall task of choosing actions and resources difficult
to be performed manually. The employment of Artificial In-
telligence (AI) techniques can simplify the task. In particular,
specific automated reasoning techniques though have their own
expressiveness that, in turn, influences the computational costs.

In this paper, we discuss how automated reasoning tech-
niques, indeed a specific type of AI, can be used to provide
adaptivity and resilience to multi-party processes in smart
manufacturing. To this aim, as proposed in [3], we model the
manufacturing resources as components of a Service Oriented
Architecture (SOA): each resource involved in the manufac-
turing process is a service accessible through an Industrial
Application Programming Interface (API). Industrial APIs
provide many features like accessing the selected services,
enabling quick integration, monitoring the behavior and status
information, and invoking commands.

II. ADAPTIVE SUPPLY CHAINS

Supply Chain Design (SCD) [4] involves many conflicting
aspects. Among them, we found facility location planning,
allocation of customers to distribution centers or factories, and
suppliers selection. Also, recovery plans are a fundamental
strategy in order to overcome disruption events caused, for
instance, by broken machines or context change. Various
recovery strategies are provided in the literature [5], includ-
ing relational strategies such as supply chain collaboration,
communication and information sharing [6]. In this sense,
it is essential for industrial partnerships to collaborate to
quickly recover from disruption. Moreover, a flexible supply
chain network structure is found appropriate for formulating
appropriate disruption risk recovery strategies [7].

In general, the common goal is the development of the
triple-A supply chain, which consists of the simultaneous
implementation of three different ideas, i.e., agility – re-
sponding to short-term changes in demand or supply quickly,
adaptability – adjusting supply chain design to accommodate
market changes, and alignment – establishing incentives for



Fig. 1. Service-based adaptive framework

Fig. 2. Schematizing adaptive strategies.

partners to improve performance of the entire chain [8]. We
enrich such definition by including resilience, as the ability to
react to disruptions along the chain. Adaptivity and, more in
general, the flexibility of processes is discussed in [9], but the
focus is generally on processes, with no specific reference to
industrial processes and supply chains.

All adaptive approaches found in the literature can be
modeled as black boxes (controllers) taking as input the
specification of the involved resources (in our case a set of
services) and the final target (in our case a manufacturing
goal) and providing as output an adaptive process (see Fig. 1).
A conceptual classification of the possible alternatives can be
defined by considering the different options for inputs and
outputs. Concerning the input, we can distinguish between the
deterministic and non-deterministic (or probabilistic) behav-
iors of manufacturing resources, and between fully specified
and under-specified manufacturing goal.

Fig. 2 shows an intuitive representation of the three possible
strategies generated as output. For each of them, the horizontal
axis represents the evolution over time, whereas the vertical
axis is an intuitive representation of the overall state of
the resources (a tuple) in some numeric form. Each action
performed in a supply chain is actually a couple < a, r >
where a is an action and r is the resource executing the action.
The chosen sequence of actions and manufacturing resources
change the state of the resources from an initial state, to a final
one representing the end of the manufacturing process and
possibly fulfilling the manufacturing goal(s). In the following
the three different types of strategies are described.
Instance repair. The supply chain process is precisely defined.
If an unexpected exception happens (e.g., a machine breaks),
automated reasoning is employed to restore the state of re-

sources to the expected one. Adaptivity is applied locally, but
the overall forthcoming process remains unchanged. In Fig. 2,
the process model is represented using a solid line, whereas
adaptation is represented using a dashed line.
Instance planning. Every time that a new process instance is
needed, automated reasoning is applied taking as input the
most recent information about resources and producing as
output an entire process model. If, at a certain point of the
execution, something (e.g., a broken resource) prevents the
plan to be completed, automated reasoning is applied again.
In Fig. 2, the part of the process that cannot be executed
is represented through a thin dashed line, whereas the thick
dashed line represents the process actually executed.
Policy-based. Automated reasoning is employed to obtain a
policy, i.e., a function that for each state proposes the next
action. Differently from the instance planning case, here if
something unexpected happens, there is no need to reapply
planning, as all the possibilities have been already computed.
In Fig. 2, all the possible legal executions of the process are
represented through dashed lines. Among these, according to
the state of the different resources, a specific one (represented
as a thick dashed line) is chosen.

III. CASE STUDY AND EXPERIMENTAL FRAMEWORK

In order to show the suitability of a supply chain adaptive
approach, we apply it to the challenging case of integrated
circuits (chip) manufacturing1, analyzing the efficiency, adap-
tivity, and limitations of the different approaches. Although
semiconductor design activities are concentrated in specific
regions of the USA, as well as in Europe and Japan, semicon-
ductor manufacturing is more widely dispersed. The industries
that provide manufacturing inputs and purchase finished semi-
conductor products are often dominated by large, multinational
organizations [10]. In addition, as witnessed by the recent
evolution of international political affairs, this production is
strongly influenced by relationships among countries, which
may produce unpredictable effects on the supply chain.

We implemented an experimental framework composed of
a prototype platform to manage the manufacturing resources
(services) maintained by the Industrial APIs and a controller
representing the black box generating the adaptive supply
chain (see Fig. 1). On the one hand, the Industrial APIs
platform relies a middleware that allows the management
of all the services involved in the manufacturing process. It
is composed of a WebSocket server and an HTTP server.
Particularly, it connects to the services via WebSockets, hav-
ing a separate communication channel with each one, and
exposes APIs to manage HTTP requests. The defined APIs
allow retrieving both the specification and the current state
of the services and request the execution of a task to be
performed by a service. Each resource is described as a
JSON file which is used by the middleware to “build” the
service. Such a file contains specific elements: (i) an id to

1Cf. https://www.screen.co.jp/spe/en/process and https://www.asml.com/en/
news/stories/2021/semiconductor-manufacturing-process-steps
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specify the identifier of the service, e.g., name of the resource,
(ii) some attributes that contain the static characteristics of
the service, e.g., actions and costs, and (iii) some features
that contains the dynamic characteristics of the service, e.g.,
status, breaking and quality condition. On the other hand,
the controller encloses an adaptive supply chain approach
which orchestrate the manufacturing resources depending on
the employed methodology. In the preliminary experiments we
applied three different approaches: (i) an instance planning
approach based on classical planning, (ii) a stochastic policy
approach employing Markov Decision Processes (MDPs), and
(iii) a stochastic constraint-based policy approach employing
DECLARE formulas (i.e., LTLf [11]) and MDPs.

IV. PRELIMINARY RESULTS AND CONCLUSIONS

We conducted initial experiments applying adaptive ap-
proaches to the case study of chip manufacturing chain and we
measured the space-time complexity as the number of services
(i.e., manufacturing resources) involved increases.

In approaches based on automated planning, increasing
the number of services does not significantly change time
and memory consumption as Planning solvers employ well-
known heuristics that efficiently derive solutions. However,
this approach does not consider stochasticity, which refers to
the probability of a certain machine failing, whereas stochastic
approaches represent and address this aspect.

On the other hand, memory consumption and execution time
of the stochastic policy approaches increases exponentially, as
the number of services increases. This is due to the carte-
sian product operation performed among the manufacturing
services to represent the entire supply chain environment.
Additionally, the stochastic constraint-based policy approach
requires more time and memory with respect to the stochastic
policy approach, mainly because of logical constraints.

Even though more efficient approaches are generally pre-
ferred, other factors may come into play in the manufacturing
context. Depending on the circumstances, the expressiveness
of the modeling language may allow to express complex
aspects of the smart manufacturing scenarios. Both the pro-
posed stochastic approaches, despite being much slower than
classical planning, have great expressive power as they capture
the stochastic behaviours in the manufacturing domains.

All the considered approaches require to express constraints
concerning the step to be performed during the supply chain
process execution. Depending on the chosen approach, such
constraints are modeled in different ways. The planning-based
approach requires a very precise specification of actions, which
is fundamental for generating, given a goal, a process to be
followed. However, it allows to model the involved products
and demi-products by monitoring the production progress. In
contrast, the approach based on stochastic policy requires a
full definition of the manufacturing process (defined as an au-
tomata). This is different in its extension which employs LTLf .
Here, the process is loosely specified by using constraints.

Another complex aspect to be analyzed, is how to model
constraints between resources available to execute specific

tasks (e.g., if resource A is used, then resource B cannot be
used). In the case of planning, this type of constraint can
be modeled with conditional effects which, however, have
consequences in the computation costs. It is not easy to
model this behavior instead in the stochastic policy approaches
because the defined goal only relies on manufacturing tasks
and does not consider the resources employed.

In this paper, we introduced a batch production case study.
In this sense, we study the adaptivity by taking into con-
sideration the fact that a specific task of the supply chain
production is executed on a batch, thus if a decision is taken
at the beginning of a task, it is maintained until the end of
it. Such an approach influences adaptivity by discarding the
possibility of adapting the production inside a specific batch
and considering only the adaptivity at the end of a task.

During the initial experiments, we only considered auto-
mated reasoning, excluding machine learning (reinforcement
learning in particular) techniques. Machine learning does not
require any manual modeling effort, but it usually requires
datasets to be trained, which are difficult to obtain in the smart
manufacturing scenario, especially at a supply chain scale.

Also, we did not considered approaches from classical
numerical optimization techniques. These techniques are avail-
able in the form of very fast implementations. The main
drawback is that modeling must be done in the form of
equations, which are more complex to compose and validate
with respect to formalisms employed in automated reasoning.
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