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Abstract

A critical challenge in neuro-symbolic (NeSy) approaches is
to handle the symbol grounding problem without direct su-
pervision. That is mapping high-dimensional raw data into
an interpretation over a finite set of abstract concepts with
a known meaning, without using labels. In this work, we
ground symbols into sequences of images by exploiting sym-
bolic logical knowledge in the form of Linear Temporal Logic
over finite traces (LTLf) formulas, and sequence-level labels
expressing if a sequence of images is compliant or not with
the given formula. Our approach is based on translating the
LTLf formula into an equivalent deterministic finite automa-
ton (DFA) and interpreting the latter in fuzzy logic. Experi-
ments show that our system outperforms recurrent neural net-
works in sequence classification and can reach high image
classification accuracy without being trained with any single-
image label.

1 Introduction
A crucial problem in neuro-symbolic integration is handling
the symbol grounding problem without direct supervision.
We refer to symbol grounding [Steels2008] as the process of
mapping raw data into an interpretation over a finite boolean
symbolic alphabet, where each symbol expresses a meaning-
ful high-level concept. In particular, we focus on grounding
symbols in raw data sequences using some prior symbolic
knowledge expressed in Linear Temporal Logic interpreted
on finite traces (LTLf) [De Giacomo and Vardi2013]. LTLf
is used in a big variety of domains, from robotics [He et
al.2019] to Business Process Management (BPM) [Giacomo
et al.2014], for specifying temporal relationships, dynamic
constraints and performing automated reasoning. It is unam-
biguous compared to natural language, yet easy to use and
understand. Evaluating if a symbolic sequence is compli-
ant with a given LTLf formula is straightforward. In sev-
eral real-world applications, however, such sequences are
not symbolic but appear ‘rendered’, or grounded in raw
data such as images, videos, words, audio, etc. In some
application domains, such for example in BPM [Kratsch,
König, and Röglinger2022] or in non-Markovian Reinforce-
ment Learning [Wang et al.2020], we could know a high-
level specification of the process expressed in terms of sym-
bols, yet exploiting this knowledge is impossible unless it
is grounded in the data. Therefore, symbol grounding rep-

resents the first preliminary step to be made to perform any
logical reasoning, included evaluation.

Deep Neural Networks (NN) perform extraordinarily well
in perception tasks on raw data [Goodfellow, Bengio, and
Courville2016]. Supervised classification can be seen as
grounding a set of classes in the dataset, by training di-
rectly on a set of (data, class) examples. Despite the success
of deep learning in this area, the main drawback remains
the acquisition of the labeled data necessary for training.
State-of-the-art self-supervised approaches have seen enor-
mous progress lately; they can compress high-dimensional
data and cluster it in a meaningful way [Grill et al.2020]
[Caron et al.2021] without using any label. In particular,
some approaches can also extract a discrete representation
of the input data [Jang, Gu, and Poole2017], which can
be considered an interpretation over a symbolic alphabet
[Asai and Fukunaga2018, Dittadi, Drachmann, and Bolan-
der2021, Umili et al.2021]. However, we do not know the
meaning of these automatically-extracted symbols, and in-
specting them or connecting them to some human-designed
knowledge remains extremely hard.

In this paper, we build upon our previous work [Umili,
Capobianco, and Giacomo2022], and we take a step in the
direction of grounding a known meaningful set of symbols
in perceptual data, with as little supervision as possible, by
exploiting some prior knowledge about expected sequenc-
ing expressed as an LTLf fomula. Our framework is based
on translating the LTLf symbolic knowledge into an equiva-
lent deterministic finite automaton (DFA) and encoding the
latter using fuzzy logic. The use of fuzzy logic has seen
many successes in neuro-symboilc AI [van Krieken, Acar,
and van Harmelen2020], and many framework are based on
it, such as Logic Tensor Networks (LTN) [Badreddine et
al.2022] and Lyrics [Marra et al.2019]. Unlike prior work,
we focus on grounding knowledge into time-extended data
sequences. Our work is similar to LTN, but extends it to
temporal logic and time-extended data. LTN extends First
Order Logic (FOL) to make it compatible with machine-
learning tasks. For example introducing the concept of a
dataset containing more data samples, and the concept of
feature. However, the concept of time is still missing, in the
sense that encoding knowledge on a set of examples (batch
dimension), each represented by a sequence of data (time di-
mension), eventually multidimensional (feature dimension),



is not straightforward. In our work, we manage the time di-
mension by applying recursion over different time steps, in
the same way recurrent neural networks do.

In summary, the main contribution of this paper is a
framework able to encode temporally extended specifica-
tions and ground them on sequences of images of any length,
through a recursive structure. Experiments show that our
method effectively classifies both sequences and single im-
ages. In particular, it is faster, requires less data, and is
more robust to overfitting than a classical end-to-end clas-
sical neural approach that cannot use high-level knowledge.

The remainder of this paper is organized as follows: in
section 2 we report related works; in section 3 we give some
preliminaries on Linear Temporal Logic and Logic Tensor
Networks; in section 4 we formulate our problem and illus-
trate in detail the method used to solve it; in section 5 we de-
fine when symbols are supposed to be groundable through
the knowledge of an LTLf formula; we report the experi-
ments evaluating our approach in section 6; and finally we
conclude and discuss directions for future work in section 7.

2 Related works
2.1 Semisupervised symbol grounding
Much prior work approaches the symbol grounding prob-
lem by assuming prior symbolic logical knowledge [Dar-
wiche2011, Diligenti, Gori, and Saccà2017, Xu et al.2018,
Badreddine et al.2022, Manhaeve et al.2018, Yang, Ishay,
and Lee2020, Winters et al.2022, Dai et al.2019, Huang et
al.2021, Tsamoura, Hospedales, and Michael2021]. These
works infer the most probable grounding of a certain set of
symbols P in non-symbolic data given prior logical knowl-
edge expressed on the alphabet P and high-level labels on
the whole NeSy process. This practice is known as semi-
supervised symbol-grounding and is tackled mainly with
two families of methods.

The first approach [Darwiche2011, Diligenti, Gori, and
Saccà2017, Xu et al.2018, Badreddine et al.2022, Manhaeve
et al.2018, Yang, Ishay, and Lee2020, Winters et al.2022]
consists in using continuous relaxations of the prior logical
knowledge. The latter is encoded as a differentiable mod-
ule lm(), while the symbol grounding function is learned
through neural classifier sg() mapping observations to sym-
bols. The two functions are combined as two layers of a NN,
and their composition lm(sg(·)) is trained to maximize the
given symbolic knowledge on the high-level labels available.

The second approach [Dai et al.2019, Huang et al.2021,
Tsamoura, Hospedales, and Michael2021] instead maintains
a crisp boolean representation of the logical knowledge and
uses a process of logic abduction. Even in this approach, a
neural classifier implements the symbol grounding function.
The classifier outputs its current belief on the symbol’s truth
value, and an abduction module corrects its predictions to
make them more consistent with the prior symbolic knowl-
edge. After that, the classifier is retrained with the corrected
symbols in a supervised fashion. This two-step training pro-
cess has been shown to make the classifier converge to the
target symbol grounding.

A benchmark for semisupervised symbol grounding is the

digit addition problem [Manhaeve et al.2018], where a sys-
tem must learn to classify MNIST digits images by knowing
only the result of their sum and how addition works. This
benchmark is not appropriate for our approach, since the ad-
dition task is not extended in time. For this reason, we pro-
pose a similar experiment on MNIST digits, that does not
concern addition and where we do not know in advance the
input sequence length. In particular, we evaluate an LTLf
formula over sequences of arbitrary lengths of digits by us-
ing a recurrent specification in the form of a fuzzy DFA.
We use the same approach of LTN, by adapting it to LTLf
formulas. To the best of our knowledge, it’s the first time
that semi-supervised symbol grounding is applied to tempo-
ral specifications.

2.2 LTL and Reinforcement Learning

LTL formulas are widely used in Reinforcement Learning
(RL) to specify non-Markovian tasks [Littman et al.2017].
Some work assumes prior knowledge of the LTL task spec-
ification [Camacho et al.2019, De Giacomo et al.2021],
which is compiled into an automaton, and monitors the au-
tomaton state during the task execution to produce non-
Markovian rewards for the task. Some other works focus on
learning the finite machine corresponding to the task from
traces of symbolic observations and rewards received by the
environment, by using known methods for automata induc-
tion [Gaon and Brafman2020, Xu et al.2021, Ronca, Licks,
and Giacomo2022].

All these works, however, use symbolic data and do not
consider the problem of discovering latent symbols in the
data. For this reason, they are applicable only in symbolic-
state environments or continuous problems for which a map-
ping between the continuous state and a symbolic interpre-
tation is known, also called labeled MDP [Wang et al.2020].

Many works assume to know an imperfect symbol
grounding function for the task [Cai et al.2020, Verginis et
al.2022, Li et al.2022]. Namely, a function that sometimes
makes mistakes in predicting symbols from states or predicts
a set of probabilistic beliefs over the symbol set instead of
a boolean interpretation. These works can be considered a
preliminary step towards integration with non-symbolic do-
mains. However, they do not asses the problem of learning
the symbol grounding function, but only how to use a pre-
trained imperfect symbol grounder.

One work [Kuo, Katz, and Barbu2020] uses the LTLf
specification of the task without assuming any knowledge of
the symbol grounding function. This work employs a neural
network architecture that is shaped as the LTL formula to
learn a representation of states, that can be easily transferred
to different LTL tasks in the same environment. The capabil-
ity to transfer the representation to new tasks suggests that
the representation can capture the semantics of symbols in
some ways. However, the representation does not exactly
ground the symbols in the environment observations.



3 Background
3.1 LTLf and DFA
Linear Temporal Logic (LTL) [Pnueli1977] is a language
which extends traditional propositional logic with modal op-
erators. With the latter we can specify rules that must hold
through time. In this work, we use LTL interpreted over
finite traces (LTLf) [De Giacomo and Vardi2013]. Such in-
terpretation allows the executions of arbitrarily long traces,
but not infinite, and is adequate for finite-horizon planning
problems.

Given a set P of propositions, the syntax for constructing
an LTLf formula ϕ is given by

ϕ ::= ⊤ | ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 (1)

where p ∈ P . We use ⊤ and ⊥ to denote true and false
respectively. X (Next) and U (Until) are temporal oper-
ators. Other temporal operators are: N (Weak Next) and
R (Release) respectively, defined as Nϕ ≡ ¬X¬ϕ and
ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2); G (globally) Gϕ ≡ ⊥Rϕ and
F (eventually) Fϕ ≡ ⊤Uϕ. A trace ρ = ρ[0], ρ[1], ... is
a sequence of propositional assignments, where ρ[x] ∈ 2P

(x ≥ 0) is the x-th point of ρ. Intuitively, ρ[x] is the set
of propositions that are true at instant x. Additionally, |ρ|
represents the length of ρ. Since each trace is finite |ρ| < ∞
and ρ ∈ (2P )∗. We refer the reader to [Pnueli1977] for a
formal description of the operators’ semantics. Any LTLf
formula ϕ can be translated in an equivalent Deterministic
Finite Automaton (DFA) Aϕ = (2P , S, s0, δt, F ), where 2P
is the automaton alphabet, S is the set of states, s0 ∈ S is the
initial state, δt : S × 2P → S is the transition function and
F ⊆ S is the set of final states. Let L(Aϕ) be the language
composed by all the strings accepted by the Aϕ we have

ρ ⊨ ϕ iff ρ ∈ L(Aϕ) (2)

Despite the size of Aϕ is double-exponential in ϕ in the
worst-case [De Giacomo and Vardi2013], Aϕ is often quite
small in practice, and scalable techniques are available for
computing it from ϕ [Zhu et al.2017, Bansal et al.2020, Gia-
como and Favorito2021].

LTLf formulas are widely used in BPM. In particular,
the BPM community has selected 21 types of formulas that
are particularly significant for describing complex processes
declaratively [Pesic and van der Aalst2006]. The latter are
at the base of the system Declare [Pesic, Schonenberg, and
van der Aalst2007] and they generate DFAs that are poly-
nomial in the original formula [Westergaard2011]. We use
the Declare formulas as a benchmark for evaluating our ap-
proach.

3.2 Logic Tensor Networks
Logic Tensor Networks (LTN) [Badreddine et al.2022] are a
neuro-symbolic framework that can reason and learn by ex-
ploiting both structured symbolic knowledge and raw data.
It implements a logic called Real Logic, which contains con-
stants, function and predicate symbols, as First Order Logic
(FOL). LTN also implements connectives (¬, ∧, ∨, →, l ↔)
and quantifiers (universal, existential, diagonal universal,
and guarded universal and existential). Any logic formula

in Real Logic is interpreted using fuzzy logic semantics,
namely, it is assigned with a continuous truth-value between
0 and 1. Fuzzy logic has shown to be suitable in several real-
world applications where a statement can be only partially
true or exceptions can be present. Notably, fuzzy interpre-
tations are based on continuous and differentiable functions,
so neural networks can co-exist in the framework and actu-
ally implement elements of the logic. Every element of Real
Logic is grounded in real tensor, so that it can be an assign-
ment to available data, the output of a neural network, or a
satisfaction level of a logic formula between 0 and 1.

LTN can be used for querying, reasoning and learning:
here we focus on learning. LTN can learn from both data and
symbolic knowledge by imposing the knowledge available,
and searching for the groundings that maximize the satisfi-
ability of that knowledge. This is done by simply defining
a loss objective that is inverse to the given formula’s satis-
faction level and optimizing the system’s trainable weights
by back-propagation. In our work, we use the same concept
of learning by best satisfiability, but we apply it to the DFA
generated by the LTLf formula. The neural computational
graph implementing the automaton has therefore a recurrent
structure, like a Long short-term memory (LSTM) neural
network, and can be applied to sequences of any length. This
feature is missing in the current implementation of LTN, and
it is very convenient for imposing logic specifications that
are extended in the time dimension.

4 Method
In this section, we formulate our problem in detail, and we
present the method used to encode the LTLf knowledge and
ground the alphabet in the data.

4.1 Problem Formulation
We consider the problem of classifying a sequence of images
I = i0, i1, ..il−1 as compliant or not with a certain specifi-
cation expressed as an LTLf formula ϕ, that is not grounded
in the images. Each image is the ‘rendering’ of a symbolic
interpretation over the formula alphabet P . This means that
there exists a function sg : I → 2P , where I is the space of
images, that maps each image into the truth values of sym-
bols in P . If we map each image in the symbolic space with
this function we obtain a trace ρ = ρ[0], ρ[1], ..., ρ[l − 1],
where l is the sequence length and ρ[i] = sg(it) ∀0 ≤ t < l.

We denote with Aϕ = (2P , Q, q0, δt, F ) the DFA corre-
sponding to the formula ϕ, where 2P is the automaton al-
phabet, Q is the set of states, q0 ∈ Q is the initial state,
δt : Q × 2P → Q is the transition function and F ⊆ Q
is the set of final states. We will consider in the experi-
ments both DFAs and Moore machines as target specifica-
tions. A Moore machine is a DFA augmented with a fi-
nite output alphabet O = {o0, o1, ...oNO−1}, where NO

is the number of output symbols, and an output function
δo : Q → O. We represent the output function as a parti-
tion of the DFA states in NO parts {Qo0 , Qo1 , ..., QoNO−1

}.
Note that a DFA is the Moore machine with binary alpha-
bet {Accepted,Rejected}, with the states partitioned in
accepting and non-accepting states. For this reason, we



(a) (b)

Figure 1: a) An example of LTLf formula with the corresponding equivalent automaton, b) our framework

will explain all the framework considering Moore machines,
since they are more general.

If we run the trace ρ in the Moore machine we obtain a
sequence of l + 1 automaton states q = q[0], q[1], ...q[l] and
a sequence of l + 1 output symbols o = o[0], o[1], ..., o[l],
where

q[0] = q0
q[i] = δt(q[i− 1], ρ[i− 1])
o[i] = δo(q[i])

(3)

We are interested in the symbol grounding function sg.
We assume that we can discover it in a weakly supervised
way. We assume therefore to know the following informa-
tion: (i) the formula ϕ, from which we can build the DFA
Aϕ, eventually augmented with a non-binary output func-
tion δo, (ii) a set of training data D supervising the whole
NeSy process composed of symbol grounding and symbolic
processing with the machine.

In particular, we will consider two applications in the ex-
periments: BPM-inspired domains and RL domains. Each
of them corresponds to a particular setting for the dataset.

• DBPM is the dataset for binary classification problems
inspired by BPM applications. In this setting we want to
classify sequences of images as compliant or not with the
given formula, therefore we have supervision only on the
last step. As a consequence DBPM is made of associa-
tions < I, ȳ >, where I is an image sequence i0, i1, ..il−1

and ȳ ∈ {0, 1} is the ground truth label denoting whether
the sequence is accepted or not.

• DRL is the dataset for non-Markovian RL domains. In
this setting we consider rewards from the environment
as labels, and we have therefore a label for each step.
We consider reward functions that can be expressed as
Reward Machines in the form of Moore machines, tak-
ing a finite number NO of possible values. As a conse-
quence, DRL is made of couples < I, Ȳ >, where I is
an image sequence i0, i1, ..il−1 and Ȳ is the sequence of
ground truth machine output labels ȳ1, ȳ2, ..., ȳl, where

ȳi ∈ {0, 1, ..., NO − 1}.
We will show this information is enough to learn the map-
ping from images to symbols for both the applications cho-
sen.

4.2 Framework
We consider our framework as a neural network composed
of two modules: (i) a perception module, implemented as
a trainable convolutional neural network CNN(i; θ) with
parameters θ, that classifies symbols from the input image
i, approximating the function sg we want to discover; (ii)
a logic module, implemented as a non-trainable recurrent
structure, that is a fuzzy correspondent of the automaton
Aϕ. Figure 1(b) shows an example of the functioning of
our framework.

The sequence of images I = i0, i1, ..., il−1 is passed one
by one to the classifier, producing l continuous vectors of
dimension |P | where P is the set of propositions used by
the formula.

We define a fuzzy predicate Symbol(p, t) denoting
whether the t-th image in the sequence belongs to class p.
The classifier implements the grounding of Symbol. In fact
the component p of the CNN prediction for the image it in
the sequence is the truth value of Symbol(p, t)

Symbol(p, t) = CNN(it; θ)p (4)

where we denote with CNN(·; θ)p component
p of the CNN output. We denote as xt =
[Symbol(p0, t), Symbol(p1, t), ..Symbol(p|P |−1, t)]
the fuzzy interpretation over propositions in P at time t,
corresponding to the complete output vector of the CNN.
This fuzzy interpretation can be used to proceed on the
automaton. Let us notice xt is a fuzzy relaxation of the t-th
point in the trace ρ[t], referring to the background section
3.1.

In particular, at any time t we are in a state qk
of the automaton, we encode this information with an-
other fuzzy predicate State, where State(qk, t) is true



if we are in state qk at time t. Again, we define as
ht the interpretation at time t over the state symbols
ht = [State(q0, t), State(q1, t), ..., State(q|Q|−1, t)], with
|Q| equal to the number of states in the DFA. Note that ht is
a fuzzy relaxation of the state at time t denoted for (bolean)
DFAs q[t] in the previous section.

We denote the input and the state at time t of the fuzzy
DFA xt and ht, respectively, to stress the connection with
recurrent neural networks.

We start at the initial state q0 of the automaton, and we
have therefore

State(q0, 0) = ⊤ ∧ (State(qi, 0) = ⊥ ∀1 ≤ i < |Q|) (5)

Then we simulate a run of the automaton using the fuzzy
symbolic interpretations x0, x1, xl−1 the classifier has pre-
dicted classifying the images.

We recall that for (boolean) DFAs, if at time t we are in a
state qi and we receive a certain interpretation ρ[t] over the
set of symbols, at time t+1 we transit to the state qj linked to
qi by the edge ei,j that is made true by the interpretation of
symbols in ρ[t]. For example, if we are in state 1 of the DFA
in Figure 1(a), and we receive the interpretation [′three′ =
False,′ two′ = False] we move to state 2 because the inter-
pretation satisfies the formula ¬three∧¬two on the arc e1,2.
More formally State(sj , t+1) = (State(si, t)∧ei,j(ρ[t])),
where we denote as ei,j(ρ[t]) the truth value of the formula
on arc ei,j when evaluated on the interpretation ρ[t].

We apply the same transition rule in fuzzy logic. In par-
ticular:

State(qj , t+ 1) =
∨

i:(i,j) is an edge of Aϕ

State(qi, t)∧ ei,j(xt)

(6)
Finally, we define the fuzzy predicate Output to represent

the output of the machine in a given time, denoting with
Output(oi, t) whether the machine gives output oi at time t.
We have therefore

Output(oi, t) =
∨

qk∈Qoi

State(qk, l) (7)

We denote the fuzzy relaxation of the ma-
chine output at time t with the vector yt =
[Output(o0, t), Output(o1, t), ..., Output(oNO−1, t)].
The predicted output must be equal to the ground truth label
ȳ. We impose this by minimizing the loss

L = 1−Output(ȳt, t) (8)

We evaluate this loss on all the steps on which we have su-
pervision, namely, the last step in the classification problem
and all the steps in the RL problem. The loss is backpropa-
gated through the network and the classifier parameters are
updated accordingly. In summary, our knowledge base is
composed of three logical axioms: (i) the initialization con-
dition (Equation 5), (ii) the transition rule (Equation 6), (iii)
the output rule (Equation 7). In particular, the initial condi-
tion only specifies the initial state and does not depend on
the classifier predictions. The transition rule calculates the
next state given the current automaton state and the symbol

prediction over the current image. The output rule calcu-
lates the current output given the current state. These two
rules are applied recursively as many times as many images
compose the sequence. Finally, the loss applies supervision
over the output exploiting the sequence labels present in the
dataset.

We ground the truth value of each logical axiom by us-
ing the following fuzzy operators: the product t-norm TP

for conjunction, its dual t-conorm SP for disjunction, stan-
dard negation NS , and the Reichenbach implication IR.
In particular, we use the set of fuzzy operators suggested
by [Badreddine et al.2022], since our method is an exten-
sion of Logic Tensor Networks.

¬ : NS(a) = 1− a
∧ : TP (a, b) = a ∗ b

∨ : SP (a, b) = a+ b− a ∗ b
→: IR(a, b) = 1− a+ a ∗ b

Figure 1(b) shows the network behavior in case of perfect
grounding. In this case, the classifier predicts all one-hot
encodings, this represents an ideal situation where no uncer-
tainty is present, and symbols are all perfectly true or per-
fectly false. Consequently, the outputs from the fuzzy tran-
sition and output function are also perfectly boolean, and the
fuzzy automaton behaves exactly as the original (boolean)
machine. The benefit of having a fuzzy automaton is that
it can predict the sequence of states even with some uncer-
tainty in the symbol grounding layer, while the original DFA
cannot handle any uncertainty. Furthermore, transitions are
differentiable, and we can back-propagate error through the
model.

Intuitively, at the beginning of training, the classifier does
not know how to map images into symbols; therefore, this
grounding will initially be random and potentially incorrect,
so the automaton states and outputs produced by taking this
grounding as inputs. Although we do not know the ground
truth sequence of states, the fuzzy automaton produces a se-
quence of probabilities over these states that are adjusted to
be coherent with the output labels, which in turn adjusts the
predicted labels over images. For example, if we know that
the DFA accepts the sequence, the last state must be a final
state. Therefore, the second-last must be linked to one final
state; the third-last must be linked to the second-last, and so
forth. All of this is automatically optimized through gradient
descent.

5 Definition and examples of groundability
through a temporal property

In this section, we formalize the concept of groundability of
symbols through an LTLf formula.

We say a symbol p ∈ P is groundable through an LTLf
formula ϕ, where P is the formula alphabet, if p is distin-
guishable from all the other symbols in the formula alpha-
bet.

Undistinguishability of two symbols: We define two
propositional symbols p1, p2 ∈ P indistinguishable from
each other through the LTLf formula ϕ, defined over sym-
bols in P , if and only if, given a generic finite trace ρ,
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Figure 2: (a) Pyramid example. (left) Drawing of the pyramid. (right) DFA corresponding to the instructions to build the pyramid. Bricks
are not all groundable through the pyramid instructions, in fact brick 1 and 2 can be confused each other. In this case the classifier can either:
(i) learn to ground images of brick1 in symbol b1 and images of brick2 in the symbol b2, this lead to 100% accuracy; (ii) learn to ground
images of brick1 in symbol b2 and images of brick2 in the symbol b1, this lead to 33% (1/3) accuracy in a balanced dataset, because only one
brick over 3 is grounded correctly (brick0). (b) Gate example. (left) Drawing of the gate. (right) DFA corresponding to the instructions to
build the gate. Bricks are all ungroundable through the gate instructions, in fact brick 0 and 1 can be confused each other if bricks 2 and 3
are confused each other. Expected symbol grounding accuracy: 100% or 0%.

and the trace ρ̃ obtained by ρ replacing truth values of p1
with those of p2 and truth values of p2 with those of p1,
ρ ⊨ ϕ ⇐⇒ ρ̃ ⊨ ϕ, ∀ρ ∈ (2P )∗.

Let us consider a generic ‘rendering’ function r that trans-
forms the trace ρ in a sequence of non-symbolic observa-
tions r(ρ). We denote the symbol grounding function as
sg = r−1. Suppose we want to discover sg supervising non-
symbolic traces r(ρ) with the formula acceptance and p1 and
p2 are indistinguishable. In that case, the symbol grounder
will never receive an error different from 0 for grounding
renderings of p1 with p2 and vice versa, and this does not
depend on the rendering function or the grounding function,
but only on the structure of the formula.

Let us further explain the concept with some examples in
the Brick World domain. Consider an assembly process for
which certain precedence constraints apply to the assembly
of the various parts. A simple example of this is building
a brick wall. We must impose that if a brick b0 rests on
other bricks (b1, b2, ..., bk), these must be placed on the wall
before the brick b0. During the construction process, we in-
dicate with the propositional variable bi whether the brick i
is placed on the wall. Considering the wall in the figure 2(a),
made up of 3 bricks, the precedence constraint corresponds
to the following LTLf formula.

ϕpyramid = G(b0 ⇒ (b1 ∧ b2)) (9)

Let us suppose we want to ground the symbols bi in ob-
servations of the wall, while it is under construction, super-
vising the grounding with compliance with the given assem-
bly instruction ϕpyramid. Since the formula accepts both the
sequences in which bricks are placed in order b2-b1-b0 and
in order b1-b2-b0, only symbol b0 is ‘groundable’ through
the formula, while b1 and b2 are not distinguishable from
each other. We can infer this also by looking at the formula
ϕpyramid or the equivalent DFA Apyramid shown in Figure
2(a). If we replace symbol b1 with symbol b2 and vice versa,
the formula does not change. Equivalently, if we exchange
the two symbols on all the arcs of the equivalent DFA, the
automaton is not modified.

The given definition of indistinguishability is not strong
enough to cover all the cases where symbols are unground-

able. Let us clarify why with another example in the Brick
World domain. Consider the ‘gate’ example, shown in Fig-
ure 2(b), described by the formula

ϕgate = (G(b0 ⇒ b2)) ∧ (G(b1 ⇒ b3)) (10)

According to the previous definition, the bricks are all
groundable in this example because there does not exist a
couple of symbols satisfying the definition of indistinguisha-
bility of two symbols. However, in this example, none of
the bricks is really groundable. Because bricks 0 and 1 can
be confused by each other if bricks 2 and 3 are confused
with each other. Therefore a symbol grounder is supposed
to achieve either 100% or 0% accuracy, no matter the ren-
dering function.

For this reason, we extend the definition to a set of sym-
bols as follows.

Ungroundability of a set of symbols: Given n couples
of distinct symbols (p1,1, p2,1), (p1,2, p2,2), ..., (p1,n, p2,n),
we say the set of symbols {p1,1, p2,1, ..., p1,n, p2,n} is un-
groundable if and only if ∀ρ ∈ (2P )∗, let ρ̃ be the trace
constructed by replacing truth values of p1,i with those of
p2;i for all 1 ≤ i ≤ n, ρ ⊨ ϕ ⇐⇒ ρ̃ ⊨ ϕ.

Consequently, we define a symbol as groundable when it
does not exist any set of substitutions that makes it indistin-
guishable from another symbol.

The reader can verify on the gate formula or DFA, in Fig-
ure 2(b), that the specification remains the same if symbols
b0 and b1 replace each other and symbols b2 and b3 replace
each other, while it changes by performing only one substi-
tution of the two.

6 Experiments
In this section we report the experiments supporting
our method. The implementation code is available
online at https://github.com/whitemech/grounding LTLf in
image sequences.

We conduct experiments in two different domains, in-
spired by two research areas in which LTLf formulas are
popularly used: BPM and non-Markovian RL.

We compare our neuro-symbolic approach (NS) with a
classical supervised deep learning approach (DL). We im-

https://github.com/whitemech/grounding_LTLf_in_image_sequences
https://github.com/whitemech/grounding_LTLf_in_image_sequences
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Figure 3: a) Visual Minecraft environment. b) Task specification as Reward Machine.

plement the latter with a convolutional neural network (the
same used by NS) followed by an LSTM. For each approach,
each formula, and each dataset, we perform 10 experiments
with different seeds, and we keep the best 8 ones.

In each experiment, we report the sequence classification
accuracy, namely the ratio of correctly evaluated sequences;
and the image classification accuracy, e.g., the ratio of cor-
rectly predicted symbolic interpretation in single images.

6.1 BPM-inspired application
Since LTL can be used to specify innumerable constraints in
BPM applications, we test our framework on a subset of for-
mulas that is as complete as possible and, at the same time,
useful for practical applications. We choose, therefore, to
test it on the Declare constraints. Declare [Pesic, Schonen-
berg, and van der Aalst2007] is one of the prime languages
of the declarative process modeling paradigm, and is com-
posed of 20 types of activity constraints expressed as LTLf
formulas. We refer the reader to [De Smedt et al.2015] for
the complete list of Declare formulas. Declare formulas as-
sume that one and only one proposition is ⊤ at each instant
of time, that is symbols are mutually exclusive. For each De-
clare formula, we perform an LTLf evaluation experiment
in three settings: (1) training on the complete dataset; (2)
training on a restricted dataset; (3) training on the complete
dataset by dropping the Declare assumption on mutually ex-
clusive symbols (see the following section for more details
about the dataset creation process).

6.2 Non-Markovian-RL-inspired application
For the second experiment, we propose the Visual Minecraft
environment, an example of a non-Markovian task with
non-symbolic states, similar to that considered by [Corazza,
Gavran, and Neider2022, Li et al.2022], but with image
states. A robotic agent can navigate a grid world environ-
ment through 4 movement actions {left, right, up, down}.

Each cell of the grid can be empty or contain one of the fol-
lowing items: pickaxe, gem, lava, door

The task consists in collecting a pickaxe and a gem (it
does not matter in which order the two items are collected)
and then going to the door, while always avoiding the lava.
The task specification corresponds to the DFA in figure 3(b).
The specification is expressed in terms of five symbols

P = {pickaxe, gem, lava, door, empty} (11)

One symbol for each item, that is True when the agent is in
a cell containing that item, plus the symbol ‘empty’ that is
True when no items are in the agent cell. We transform the
DFA into a Moore machine by defining a reward function on
its states that is maximum on the final states. In particular,
we define the reward on state qi as the opposite of the dis-
tance to the closest final state, when this distance is smaller
than ∞, and equal to a negative constant C for states discon-
nected from the final states.

r(qi) = max{min
f∈F

dist(qi, f), C} (12)

In this way, we obtain a quite dense reward function, which
is shown in red on the automaton states in Figure 3(b). Fig-
ure 3(a) shows an example of image state returned by the
environment during the interaction with it.

6.3 MNIST dataset
For the BPM inspired task, since Declare formulas are
defined on the binary alphabet P = {0, 1}, we create
the dataset by rendering symbolic configurations using im-
ages of zeros and ones from the MNIST dataset [Lecun et
al.1998]. For each formula, all the possible symbolic traces
with length between 1 and 4 are created and labeled as ac-
cepted or rejected. Note that we supervise only the output in
the last step of the sequence. Symbolic traces are randomly
split in train traces and test traces, we denote as ptraces,train
the percentage of traces used for training. In the same way,



Figure 4: Experiments over 20 Declare formulas. In the first row: sequence classification accuracy, in the second row: image classification
accuracy. They are obtained by training on three different datasets: (first columns) complete dataset, (second column) restricted dataset,
(third column) complete dataset with non-mutually exclusive symbols. Solid lines represent mean values, shaded areas represent standard
deviations.

Figure 5: Results in the Visual Minecraft environment. Left) Accuracy over sequences during training of the symbol grounder. Right) Symbol
grounding accuracy on single images.

images in the MNIST dataset are randomly divided in train
and test images, we denote as pimages,train the percentage
of images used for training.

We construct the training dataset by rendering train traces
with train images and the test dataset by rendering test traces
with test images. In this way, the test contains symbolic
traces never observed in the training, in which each symbolic
interpretation is rendered with an image never observed dur-
ing training.

We test our approach on three dataset: (i) complete, (ii)
restricted, (iii) complete with non-mutually exclusive sym-
bols. The complete dataset is built as described above with
parameters ptraces,train = 50% and pimages,train =85%.
The restricted dataset is constructed by using parameters
ptraces,train=40% and pimages,train = 15%. Achieving
good perception performances on the restricted dataset is
therefore more difficult, since a big percentage of possible
renderings are not observed during training.

Images from MNIST dataset render only one digit at a
time (mutually exclusive symbols), however our framework
can be tested also for multilabel classification, as needed
when symbols are not mutually exclusive. For this purpose,

we create also a dataset rendering interpretations non in the
MNIST dataset: when all symbols are set to false (rendered
as a black image), and when both symbols are set to true
(rendered as a ‘zero’ image and a ‘one’ image superimposed
on each other). We create a dataset for multilabel classi-
fication by modifying MNIST images as described above
and using the same parameters values used for the com-
plete dataset, namely ptraces,train = 50% and pimages,train

=85%.

6.4 Minecraft dataset
For the application to the Minecraft environment, we cre-
ate a dataset simulating 40 episodes in the environment and
collecting the images rendered by the environment. Each
episode lasts 30 steps; therefore, it produces a sequence of
30 images corresponding to the environment states and a se-
quence of 30 reward values, that are used to label the image
sequence at each step. Episodes are balanced between pos-
itive and negative examples. In 20 episodes, the agent cor-
rectly collects all the items and goes to the door avoiding the
lava; in the other 20, it fails. We split the dataset in a 80%
for training and 20% for testing.



6.5 Results on MNIST Dataset
Figure 4 shows the mean results over the 20 different De-
clare formulas. In all the plots solid line is the mean, and
the shaded area represents the standard deviation. In the im-
age sequence classification task, Figure 4 (first row), our ap-
proach outperforms the pure deep learning approach in all
the three datasets, even in the non-mutually exclusive sym-
bol case, although Declare formulas are not designed for this
kind of interpretation. The LSTM-based approach struggles
to reach the top accuracy on the test set, and this is even more
evident in the experiment on the restricted image dataset. It
also happens because in some formulas the LSTM tends to
overfit the training data, which is visible in the results on the
single formulas. This confirms our intuition that the LTLf
knowledge can be exploited to simplify the learning process.
In particular, this happens because our method has to learn
only to extract the right ”visual” features and has the ”tem-
poral” ones somehow encoded in the automaton’s knowl-
edge, while the DL approach has to learn both the ”visual”
and ”temporal” features from the data.

In the image classification task, Figure 4 (second row),
our approach reaches high accuracy on both the test and
training sets without exploiting any image label, that is a
quite impressive result.

6.6 Results on the Minecraft environment
Figure 5 shows train and test sequence classification accu-
racy (left) and symbol grounding accuracy on single im-
ages (right). Let us notice the task specification has two
ungroundable symbols: gem and pickaxe. Since the agent
can collect these two items in any order, the framework does
not receive enough supervision to distinguish between the
two. Therefore image classification does not achieve 100%
accuracy. However, sequence classification can still achieve
top accuracy even if the symbol grounder confuses the gem
for the pickaxe and vice-versa. The end-to-end deep learn-
ing approach performs very poorly in this task, obtaining
only 40% of sequence accuracy. Investigating the reason for
these poor performances, we found that the NN almost never
predicts rewards of -1 and -2, corresponding to the scarcest
reward labels in the dataset. In fact, even if we balanced
the dataset between positive (reward = 0 in the last step) and
negative (reward < 0 in the last step) episodes, the reward
labels are not balanced within the episodes. Learning classi-
fication tasks from highly biased data with neural networks
can be very difficult, as experiments in the Minecraft envi-
ronment show. However, as the figure shows, our approach
is unaffected by the label imbalance. Let us notice some
differences between the two applications considered. First,
we have two different levels of supervision in the two tasks.
In the RL domain, the rewards label sequences at each step,
while in the BPM domain, labels supervise only the last step.
Apart from that, the Minecraft task is more challenging for
many reasons. First, the number of symbols to recognize
is larger. Furthermore, the image sequences are longer than
in the MNIST dataset; we consider traces of length 30 in
the Minecraft task and 4 in the MNIST task. Let us also
notice that the environment highly biases the distribution of

symbols and reward labels in sequences. For example, the
‘empty’ symbol is much more frequent than the others, and
most possible symbolic traces are unfeasible in the environ-
ment and, therefore, never observed. For example, the agent
cannot jump from one item to the other, but it has to walk
and observe many empty cells in between. This can compli-
cate the classification task.

7 Conclusion and future work
In conclusion, we propose a framework for exploiting high-
level logical knowledge in the form of LTLf formulas in
classification task over sequences of images. In particular,
we use the temporal knowledge to map images into a set
of symbols with a known meaning without any image label.
We have shown that discovering this mapping is possible by
using only sequence-level labels and the logical knowledge.
We have shown that our framework is applicable in differ-
ent domains, ranging from BPM-inspired applications to vi-
sual non-Markovian RL environments. Furthermore, our ap-
proach outperforms the end-to-end approach based on recur-
rent neural networks in sequence classification: it is more
general and can maintain high performances using fewer la-
bels or highly unbalanced labels. In future work, we want
to apply this framework to a more realistic scenario in the
area of BPM and integrate it with RL algorithms for non-
Markovian tasks.
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